|
|
|
@ -61,18 +61,26 @@
|
|
|
|
|
#include "config.h"
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef OUTSIDE_SPEEX
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
static void *speex_alloc (int size) {return calloc(size,1);}
|
|
|
|
|
static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);}
|
|
|
|
|
static void speex_free (void *ptr) {free(ptr);}
|
|
|
|
|
#include "speex_resampler.h"
|
|
|
|
|
#include "arch.h"
|
|
|
|
|
#else /* OUTSIDE_SPEEX */
|
|
|
|
|
|
|
|
|
|
#include "speex/speex_resampler.h"
|
|
|
|
|
#include "arch.h"
|
|
|
|
|
#include "os_support.h"
|
|
|
|
|
#endif /* OUTSIDE_SPEEX */
|
|
|
|
|
|
|
|
|
|
#include "stack_alloc.h"
|
|
|
|
|
#include <math.h>
|
|
|
|
|
#include <limits.h>
|
|
|
|
|
|
|
|
|
|
#ifndef M_PI
|
|
|
|
|
#define M_PI 3.14159263
|
|
|
|
|
#define M_PI 3.14159265358979323846
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
@ -92,6 +100,10 @@ static void speex_free (void *ptr) {free(ptr);}
|
|
|
|
|
#include "resample_sse.h"
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef _USE_NEON
|
|
|
|
|
#include "resample_neon.h"
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Numer of elements to allocate on the stack */
|
|
|
|
|
#ifdef VAR_ARRAYS
|
|
|
|
|
#define FIXED_STACK_ALLOC 8192
|
|
|
|
@ -133,7 +145,7 @@ struct SpeexResamplerState_ {
|
|
|
|
|
int out_stride;
|
|
|
|
|
} ;
|
|
|
|
|
|
|
|
|
|
static double kaiser12_table[68] = {
|
|
|
|
|
static const double kaiser12_table[68] = {
|
|
|
|
|
0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
|
|
|
|
|
0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
|
|
|
|
|
0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
|
|
|
|
@ -147,7 +159,7 @@ static double kaiser12_table[68] = {
|
|
|
|
|
0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
|
|
|
|
|
0.00001000, 0.00000000};
|
|
|
|
|
/*
|
|
|
|
|
static double kaiser12_table[36] = {
|
|
|
|
|
static const double kaiser12_table[36] = {
|
|
|
|
|
0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
|
|
|
|
|
0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
|
|
|
|
|
0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
|
|
|
|
@ -155,7 +167,7 @@ static double kaiser12_table[36] = {
|
|
|
|
|
0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
|
|
|
|
|
0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
|
|
|
|
|
*/
|
|
|
|
|
static double kaiser10_table[36] = {
|
|
|
|
|
static const double kaiser10_table[36] = {
|
|
|
|
|
0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
|
|
|
|
|
0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
|
|
|
|
|
0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
|
|
|
|
@ -163,7 +175,7 @@ static double kaiser10_table[36] = {
|
|
|
|
|
0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
|
|
|
|
|
0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};
|
|
|
|
|
|
|
|
|
|
static double kaiser8_table[36] = {
|
|
|
|
|
static const double kaiser8_table[36] = {
|
|
|
|
|
0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
|
|
|
|
|
0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
|
|
|
|
|
0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
|
|
|
|
@ -171,7 +183,7 @@ static double kaiser8_table[36] = {
|
|
|
|
|
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
|
|
|
|
|
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
|
|
|
|
|
|
|
|
|
|
static double kaiser6_table[36] = {
|
|
|
|
|
static const double kaiser6_table[36] = {
|
|
|
|
|
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
|
|
|
|
|
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
|
|
|
|
|
0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
|
|
|
|
@ -180,19 +192,19 @@ static double kaiser6_table[36] = {
|
|
|
|
|
0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};
|
|
|
|
|
|
|
|
|
|
struct FuncDef {
|
|
|
|
|
double *table;
|
|
|
|
|
const double *table;
|
|
|
|
|
int oversample;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct FuncDef _KAISER12 = {kaiser12_table, 64};
|
|
|
|
|
static const struct FuncDef _KAISER12 = {kaiser12_table, 64};
|
|
|
|
|
#define KAISER12 (&_KAISER12)
|
|
|
|
|
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
|
|
|
|
|
#define KAISER12 (&_KAISER12)*/
|
|
|
|
|
static struct FuncDef _KAISER10 = {kaiser10_table, 32};
|
|
|
|
|
static const struct FuncDef _KAISER10 = {kaiser10_table, 32};
|
|
|
|
|
#define KAISER10 (&_KAISER10)
|
|
|
|
|
static struct FuncDef _KAISER8 = {kaiser8_table, 32};
|
|
|
|
|
static const struct FuncDef _KAISER8 = {kaiser8_table, 32};
|
|
|
|
|
#define KAISER8 (&_KAISER8)
|
|
|
|
|
static struct FuncDef _KAISER6 = {kaiser6_table, 32};
|
|
|
|
|
static const struct FuncDef _KAISER6 = {kaiser6_table, 32};
|
|
|
|
|
#define KAISER6 (&_KAISER6)
|
|
|
|
|
|
|
|
|
|
struct QualityMapping {
|
|
|
|
@ -200,7 +212,7 @@ struct QualityMapping {
|
|
|
|
|
int oversample;
|
|
|
|
|
float downsample_bandwidth;
|
|
|
|
|
float upsample_bandwidth;
|
|
|
|
|
struct FuncDef *window_func;
|
|
|
|
|
const struct FuncDef *window_func;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -227,7 +239,7 @@ static const struct QualityMapping quality_map[11] = {
|
|
|
|
|
{256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */
|
|
|
|
|
};
|
|
|
|
|
/*8,24,40,56,80,104,128,160,200,256,320*/
|
|
|
|
|
static double compute_func(float x, struct FuncDef *func)
|
|
|
|
|
static double compute_func(float x, const struct FuncDef *func)
|
|
|
|
|
{
|
|
|
|
|
float y, frac;
|
|
|
|
|
double interp[4];
|
|
|
|
@ -262,7 +274,7 @@ int main(int argc, char **argv)
|
|
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
|
/* The slow way of computing a sinc for the table. Should improve that some day */
|
|
|
|
|
static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func)
|
|
|
|
|
static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
|
|
|
|
|
{
|
|
|
|
|
/*fprintf (stderr, "%f ", x);*/
|
|
|
|
|
float xx = x * cutoff;
|
|
|
|
@ -275,7 +287,7 @@ static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_fu
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
/* The slow way of computing a sinc for the table. Should improve that some day */
|
|
|
|
|
static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func)
|
|
|
|
|
static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
|
|
|
|
|
{
|
|
|
|
|
/*fprintf (stderr, "%f ", x);*/
|
|
|
|
|
float xx = x * cutoff;
|
|
|
|
@ -330,28 +342,35 @@ static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t c
|
|
|
|
|
const int frac_advance = st->frac_advance;
|
|
|
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
|
|
|
spx_word32_t sum;
|
|
|
|
|
int j;
|
|
|
|
|
|
|
|
|
|
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
|
|
|
|
{
|
|
|
|
|
const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
|
|
|
|
|
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
|
|
|
|
|
const spx_word16_t *iptr = & in[last_sample];
|
|
|
|
|
|
|
|
|
|
#ifndef OVERRIDE_INNER_PRODUCT_SINGLE
|
|
|
|
|
float accum[4] = {0,0,0,0};
|
|
|
|
|
int j;
|
|
|
|
|
sum = 0;
|
|
|
|
|
for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]);
|
|
|
|
|
|
|
|
|
|
/* This code is slower on most DSPs which have only 2 accumulators.
|
|
|
|
|
Plus this this forces truncation to 32 bits and you lose the HW guard bits.
|
|
|
|
|
I think we can trust the compiler and let it vectorize and/or unroll itself.
|
|
|
|
|
spx_word32_t accum[4] = {0,0,0,0};
|
|
|
|
|
for(j=0;j<N;j+=4) {
|
|
|
|
|
accum[0] += sinc[j]*iptr[j];
|
|
|
|
|
accum[1] += sinc[j+1]*iptr[j+1];
|
|
|
|
|
accum[2] += sinc[j+2]*iptr[j+2];
|
|
|
|
|
accum[3] += sinc[j+3]*iptr[j+3];
|
|
|
|
|
accum[0] += MULT16_16(sinct[j], iptr[j]);
|
|
|
|
|
accum[1] += MULT16_16(sinct[j+1], iptr[j+1]);
|
|
|
|
|
accum[2] += MULT16_16(sinct[j+2], iptr[j+2]);
|
|
|
|
|
accum[3] += MULT16_16(sinct[j+3], iptr[j+3]);
|
|
|
|
|
}
|
|
|
|
|
sum = accum[0] + accum[1] + accum[2] + accum[3];
|
|
|
|
|
*/
|
|
|
|
|
sum = SATURATE32PSHR(sum, 15, 32767);
|
|
|
|
|
#else
|
|
|
|
|
sum = inner_product_single(sinc, iptr, N);
|
|
|
|
|
sum = inner_product_single(sinct, iptr, N);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
out[out_stride * out_sample++] = PSHR32(sum, 15);
|
|
|
|
|
out[out_stride * out_sample++] = sum;
|
|
|
|
|
last_sample += int_advance;
|
|
|
|
|
samp_frac_num += frac_advance;
|
|
|
|
|
if (samp_frac_num >= den_rate)
|
|
|
|
@ -381,25 +400,25 @@ static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t c
|
|
|
|
|
const int frac_advance = st->frac_advance;
|
|
|
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
|
|
|
double sum;
|
|
|
|
|
int j;
|
|
|
|
|
|
|
|
|
|
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
|
|
|
|
{
|
|
|
|
|
const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
|
|
|
|
|
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
|
|
|
|
|
const spx_word16_t *iptr = & in[last_sample];
|
|
|
|
|
|
|
|
|
|
#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
|
|
|
|
|
int j;
|
|
|
|
|
double accum[4] = {0,0,0,0};
|
|
|
|
|
|
|
|
|
|
for(j=0;j<N;j+=4) {
|
|
|
|
|
accum[0] += sinc[j]*iptr[j];
|
|
|
|
|
accum[1] += sinc[j+1]*iptr[j+1];
|
|
|
|
|
accum[2] += sinc[j+2]*iptr[j+2];
|
|
|
|
|
accum[3] += sinc[j+3]*iptr[j+3];
|
|
|
|
|
accum[0] += sinct[j]*iptr[j];
|
|
|
|
|
accum[1] += sinct[j+1]*iptr[j+1];
|
|
|
|
|
accum[2] += sinct[j+2]*iptr[j+2];
|
|
|
|
|
accum[3] += sinct[j+3]*iptr[j+3];
|
|
|
|
|
}
|
|
|
|
|
sum = accum[0] + accum[1] + accum[2] + accum[3];
|
|
|
|
|
#else
|
|
|
|
|
sum = inner_product_double(sinc, iptr, N);
|
|
|
|
|
sum = inner_product_double(sinct, iptr, N);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
out[out_stride * out_sample++] = PSHR32(sum, 15);
|
|
|
|
@ -428,7 +447,6 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|
|
|
|
const int int_advance = st->int_advance;
|
|
|
|
|
const int frac_advance = st->frac_advance;
|
|
|
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
|
|
|
int j;
|
|
|
|
|
spx_word32_t sum;
|
|
|
|
|
|
|
|
|
|
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
|
|
|
@ -445,6 +463,7 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
|
|
|
|
|
int j;
|
|
|
|
|
spx_word32_t accum[4] = {0,0,0,0};
|
|
|
|
|
|
|
|
|
|
for(j=0;j<N;j++) {
|
|
|
|
@ -456,13 +475,14 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cubic_coef(frac, interp);
|
|
|
|
|
sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
|
|
|
|
|
sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1));
|
|
|
|
|
sum = SATURATE32PSHR(sum, 15, 32767);
|
|
|
|
|
#else
|
|
|
|
|
cubic_coef(frac, interp);
|
|
|
|
|
sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
out[out_stride * out_sample++] = PSHR32(sum,15);
|
|
|
|
|
out[out_stride * out_sample++] = sum;
|
|
|
|
|
last_sample += int_advance;
|
|
|
|
|
samp_frac_num += frac_advance;
|
|
|
|
|
if (samp_frac_num >= den_rate)
|
|
|
|
@ -490,7 +510,6 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|
|
|
|
const int int_advance = st->int_advance;
|
|
|
|
|
const int frac_advance = st->frac_advance;
|
|
|
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
|
|
|
int j;
|
|
|
|
|
spx_word32_t sum;
|
|
|
|
|
|
|
|
|
|
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
|
|
|
@ -507,6 +526,7 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
|
|
|
|
|
int j;
|
|
|
|
|
double accum[4] = {0,0,0,0};
|
|
|
|
|
|
|
|
|
|
for(j=0;j<N;j++) {
|
|
|
|
@ -540,11 +560,47 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
/* This resampler is used to produce zero output in situations where memory
|
|
|
|
|
for the filter could not be allocated. The expected numbers of input and
|
|
|
|
|
output samples are still processed so that callers failing to check error
|
|
|
|
|
codes are not surprised, possibly getting into infinite loops. */
|
|
|
|
|
static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
{
|
|
|
|
|
int out_sample = 0;
|
|
|
|
|
int last_sample = st->last_sample[channel_index];
|
|
|
|
|
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
|
|
|
|
|
const int out_stride = st->out_stride;
|
|
|
|
|
const int int_advance = st->int_advance;
|
|
|
|
|
const int frac_advance = st->frac_advance;
|
|
|
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
|
|
|
|
|
|
|
|
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
|
|
|
|
{
|
|
|
|
|
out[out_stride * out_sample++] = 0;
|
|
|
|
|
last_sample += int_advance;
|
|
|
|
|
samp_frac_num += frac_advance;
|
|
|
|
|
if (samp_frac_num >= den_rate)
|
|
|
|
|
{
|
|
|
|
|
samp_frac_num -= den_rate;
|
|
|
|
|
last_sample++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
st->last_sample[channel_index] = last_sample;
|
|
|
|
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
|
|
|
|
return out_sample;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int update_filter(SpeexResamplerState *st)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t old_length;
|
|
|
|
|
spx_uint32_t old_length = st->filt_len;
|
|
|
|
|
spx_uint32_t old_alloc_size = st->mem_alloc_size;
|
|
|
|
|
int use_direct;
|
|
|
|
|
spx_uint32_t min_sinc_table_length;
|
|
|
|
|
spx_uint32_t min_alloc_size;
|
|
|
|
|
|
|
|
|
|
old_length = st->filt_len;
|
|
|
|
|
st->int_advance = st->num_rate/st->den_rate;
|
|
|
|
|
st->frac_advance = st->num_rate%st->den_rate;
|
|
|
|
|
st->oversample = quality_map[st->quality].oversample;
|
|
|
|
|
st->filt_len = quality_map[st->quality].base_length;
|
|
|
|
|
|
|
|
|
@ -554,8 +610,8 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
|
|
|
|
|
/* FIXME: divide the numerator and denominator by a certain amount if they're too large */
|
|
|
|
|
st->filt_len = st->filt_len*st->num_rate / st->den_rate;
|
|
|
|
|
/* Round down to make sure we have a multiple of 4 */
|
|
|
|
|
st->filt_len &= (~0x3);
|
|
|
|
|
/* Round up to make sure we have a multiple of 8 for SSE */
|
|
|
|
|
st->filt_len = ((st->filt_len-1)&(~0x7))+8;
|
|
|
|
|
if (2*st->den_rate < st->num_rate)
|
|
|
|
|
st->oversample >>= 1;
|
|
|
|
|
if (4*st->den_rate < st->num_rate)
|
|
|
|
@ -572,16 +628,35 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Choose the resampling type that requires the least amount of memory */
|
|
|
|
|
if (st->den_rate <= st->oversample)
|
|
|
|
|
#ifdef RESAMPLE_FULL_SINC_TABLE
|
|
|
|
|
use_direct = 1;
|
|
|
|
|
if (INT_MAX/sizeof(spx_word16_t)/st->den_rate < st->filt_len)
|
|
|
|
|
goto fail;
|
|
|
|
|
#else
|
|
|
|
|
use_direct = st->filt_len*st->den_rate <= st->filt_len*st->oversample+8
|
|
|
|
|
&& INT_MAX/sizeof(spx_word16_t)/st->den_rate >= st->filt_len;
|
|
|
|
|
#endif
|
|
|
|
|
if (use_direct)
|
|
|
|
|
{
|
|
|
|
|
min_sinc_table_length = st->filt_len*st->den_rate;
|
|
|
|
|
} else {
|
|
|
|
|
if ((INT_MAX/sizeof(spx_word16_t)-8)/st->oversample < st->filt_len)
|
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
|
|
min_sinc_table_length = st->filt_len*st->oversample+8;
|
|
|
|
|
}
|
|
|
|
|
if (st->sinc_table_length < min_sinc_table_length)
|
|
|
|
|
{
|
|
|
|
|
spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t));
|
|
|
|
|
if (!sinc_table)
|
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
|
|
st->sinc_table = sinc_table;
|
|
|
|
|
st->sinc_table_length = min_sinc_table_length;
|
|
|
|
|
}
|
|
|
|
|
if (use_direct)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
if (!st->sinc_table)
|
|
|
|
|
st->sinc_table = (spx_word16_t *)speex_alloc(st->filt_len*st->den_rate*sizeof(spx_word16_t));
|
|
|
|
|
else if (st->sinc_table_length < st->filt_len*st->den_rate)
|
|
|
|
|
{
|
|
|
|
|
st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,st->filt_len*st->den_rate*sizeof(spx_word16_t));
|
|
|
|
|
st->sinc_table_length = st->filt_len*st->den_rate;
|
|
|
|
|
}
|
|
|
|
|
for (i=0;i<st->den_rate;i++)
|
|
|
|
|
{
|
|
|
|
|
spx_int32_t j;
|
|
|
|
@ -601,13 +676,6 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
/*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/
|
|
|
|
|
} else {
|
|
|
|
|
spx_int32_t i;
|
|
|
|
|
if (!st->sinc_table)
|
|
|
|
|
st->sinc_table = (spx_word16_t *)speex_alloc((st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
|
|
|
|
|
else if (st->sinc_table_length < st->filt_len*st->oversample+8)
|
|
|
|
|
{
|
|
|
|
|
st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,(st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
|
|
|
|
|
st->sinc_table_length = st->filt_len*st->oversample+8;
|
|
|
|
|
}
|
|
|
|
|
for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++)
|
|
|
|
|
st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func);
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
@ -620,43 +688,39 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
#endif
|
|
|
|
|
/*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/
|
|
|
|
|
}
|
|
|
|
|
st->int_advance = st->num_rate/st->den_rate;
|
|
|
|
|
st->frac_advance = st->num_rate%st->den_rate;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Here's the place where we update the filter memory to take into account
|
|
|
|
|
the change in filter length. It's probably the messiest part of the code
|
|
|
|
|
due to handling of lots of corner cases. */
|
|
|
|
|
if (!st->mem)
|
|
|
|
|
|
|
|
|
|
/* Adding buffer_size to filt_len won't overflow here because filt_len
|
|
|
|
|
could be multiplied by sizeof(spx_word16_t) above. */
|
|
|
|
|
min_alloc_size = st->filt_len-1 + st->buffer_size;
|
|
|
|
|
if (min_alloc_size > st->mem_alloc_size)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
|
|
|
|
|
st->mem = (spx_word16_t*)speex_alloc(st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
|
|
|
|
|
for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
|
|
|
|
|
st->mem[i] = 0;
|
|
|
|
|
/*speex_warning("init filter");*/
|
|
|
|
|
} else if (!st->started)
|
|
|
|
|
spx_word16_t *mem;
|
|
|
|
|
if (INT_MAX/sizeof(spx_word16_t)/st->nb_channels < min_alloc_size)
|
|
|
|
|
goto fail;
|
|
|
|
|
else if (!(mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(*mem))))
|
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
|
|
st->mem = mem;
|
|
|
|
|
st->mem_alloc_size = min_alloc_size;
|
|
|
|
|
}
|
|
|
|
|
if (!st->started)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
|
|
|
|
|
st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
|
|
|
|
|
for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
|
|
|
|
|
st->mem[i] = 0;
|
|
|
|
|
/*speex_warning("reinit filter");*/
|
|
|
|
|
} else if (st->filt_len > old_length)
|
|
|
|
|
{
|
|
|
|
|
spx_int32_t i;
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
/* Increase the filter length */
|
|
|
|
|
/*speex_warning("increase filter size");*/
|
|
|
|
|
int old_alloc_size = st->mem_alloc_size;
|
|
|
|
|
if ((st->filt_len-1 + st->buffer_size) > st->mem_alloc_size)
|
|
|
|
|
for (i=st->nb_channels;i--;)
|
|
|
|
|
{
|
|
|
|
|
st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
|
|
|
|
|
st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
|
|
|
|
|
}
|
|
|
|
|
for (i=st->nb_channels-1;i>=0;i--)
|
|
|
|
|
{
|
|
|
|
|
spx_int32_t j;
|
|
|
|
|
spx_uint32_t j;
|
|
|
|
|
spx_uint32_t olen = old_length;
|
|
|
|
|
/*if (st->magic_samples[i])*/
|
|
|
|
|
{
|
|
|
|
@ -664,7 +728,7 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
|
|
|
|
|
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
|
|
|
|
|
olen = old_length + 2*st->magic_samples[i];
|
|
|
|
|
for (j=old_length-2+st->magic_samples[i];j>=0;j--)
|
|
|
|
|
for (j=old_length-1+st->magic_samples[i];j--;)
|
|
|
|
|
st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j];
|
|
|
|
|
for (j=0;j<st->magic_samples[i];j++)
|
|
|
|
|
st->mem[i*st->mem_alloc_size+j] = 0;
|
|
|
|
@ -705,18 +769,28 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
st->magic_samples[i] += old_magic;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
|
|
|
|
|
fail:
|
|
|
|
|
st->resampler_ptr = resampler_basic_zero;
|
|
|
|
|
/* st->mem may still contain consumed input samples for the filter.
|
|
|
|
|
Restore filt_len so that filt_len - 1 still points to the position after
|
|
|
|
|
the last of these samples. */
|
|
|
|
|
st->filt_len = old_length;
|
|
|
|
|
return RESAMPLER_ERR_ALLOC_FAILED;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
|
|
|
|
|
EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
|
|
|
|
|
{
|
|
|
|
|
return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
|
|
|
|
|
EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
SpeexResamplerState *st;
|
|
|
|
|
int filter_err;
|
|
|
|
|
|
|
|
|
|
if (quality > 10 || quality < 0)
|
|
|
|
|
{
|
|
|
|
|
if (err)
|
|
|
|
@ -742,16 +816,12 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
st->in_stride = 1;
|
|
|
|
|
st->out_stride = 1;
|
|
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
|
st->buffer_size = 160;
|
|
|
|
|
#else
|
|
|
|
|
st->buffer_size = 160;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Per channel data */
|
|
|
|
|
st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
|
|
|
|
|
st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
|
|
|
|
|
st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
|
|
|
|
|
st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t));
|
|
|
|
|
st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t));
|
|
|
|
|
st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t));
|
|
|
|
|
for (i=0;i<nb_channels;i++)
|
|
|
|
|
{
|
|
|
|
|
st->last_sample[i] = 0;
|
|
|
|
@ -762,17 +832,21 @@ static void update_filter(SpeexResamplerState *st)
|
|
|
|
|
speex_resampler_set_quality(st, quality);
|
|
|
|
|
speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
update_filter(st);
|
|
|
|
|
|
|
|
|
|
st->initialised = 1;
|
|
|
|
|
filter_err = update_filter(st);
|
|
|
|
|
if (filter_err == RESAMPLER_ERR_SUCCESS)
|
|
|
|
|
{
|
|
|
|
|
st->initialised = 1;
|
|
|
|
|
} else {
|
|
|
|
|
speex_resampler_destroy(st);
|
|
|
|
|
st = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (err)
|
|
|
|
|
*err = RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
*err = filter_err;
|
|
|
|
|
|
|
|
|
|
return st;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_destroy(SpeexResamplerState *st)
|
|
|
|
|
EXPORT void speex_resampler_destroy(SpeexResamplerState *st)
|
|
|
|
|
{
|
|
|
|
|
speex_free(st->mem);
|
|
|
|
|
speex_free(st->sinc_table);
|
|
|
|
@ -829,9 +903,9 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
|
int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
#else
|
|
|
|
|
int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
|
|
|
|
EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
int j;
|
|
|
|
@ -866,13 +940,13 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
}
|
|
|
|
|
*in_len -= ilen;
|
|
|
|
|
*out_len -= olen;
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
|
int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
|
|
|
|
EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
|
|
|
|
#else
|
|
|
|
|
int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
int j;
|
|
|
|
@ -940,20 +1014,22 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
*in_len -= ilen;
|
|
|
|
|
*out_len -= olen;
|
|
|
|
|
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
|
|
|
|
EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
int istride_save, ostride_save;
|
|
|
|
|
spx_uint32_t bak_len = *out_len;
|
|
|
|
|
spx_uint32_t bak_out_len = *out_len;
|
|
|
|
|
spx_uint32_t bak_in_len = *in_len;
|
|
|
|
|
istride_save = st->in_stride;
|
|
|
|
|
ostride_save = st->out_stride;
|
|
|
|
|
st->in_stride = st->out_stride = st->nb_channels;
|
|
|
|
|
for (i=0;i<st->nb_channels;i++)
|
|
|
|
|
{
|
|
|
|
|
*out_len = bak_len;
|
|
|
|
|
*out_len = bak_out_len;
|
|
|
|
|
*in_len = bak_in_len;
|
|
|
|
|
if (in != NULL)
|
|
|
|
|
speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
|
|
|
|
|
else
|
|
|
|
@ -961,20 +1037,22 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
}
|
|
|
|
|
st->in_stride = istride_save;
|
|
|
|
|
st->out_stride = ostride_save;
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
int istride_save, ostride_save;
|
|
|
|
|
spx_uint32_t bak_len = *out_len;
|
|
|
|
|
spx_uint32_t bak_out_len = *out_len;
|
|
|
|
|
spx_uint32_t bak_in_len = *in_len;
|
|
|
|
|
istride_save = st->in_stride;
|
|
|
|
|
ostride_save = st->out_stride;
|
|
|
|
|
st->in_stride = st->out_stride = st->nb_channels;
|
|
|
|
|
for (i=0;i<st->nb_channels;i++)
|
|
|
|
|
{
|
|
|
|
|
*out_len = bak_len;
|
|
|
|
|
*out_len = bak_out_len;
|
|
|
|
|
*in_len = bak_in_len;
|
|
|
|
|
if (in != NULL)
|
|
|
|
|
speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
|
|
|
|
|
else
|
|
|
|
@ -982,21 +1060,21 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
}
|
|
|
|
|
st->in_stride = istride_save;
|
|
|
|
|
st->out_stride = ostride_save;
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
|
|
|
|
EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
|
|
|
|
{
|
|
|
|
|
return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
|
|
|
|
|
EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
|
|
|
|
|
{
|
|
|
|
|
*in_rate = st->in_rate;
|
|
|
|
|
*out_rate = st->out_rate;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
|
|
|
|
EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t fact;
|
|
|
|
|
spx_uint32_t old_den;
|
|
|
|
@ -1031,17 +1109,17 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (st->initialised)
|
|
|
|
|
update_filter(st);
|
|
|
|
|
return update_filter(st);
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den)
|
|
|
|
|
EXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den)
|
|
|
|
|
{
|
|
|
|
|
*ratio_num = st->num_rate;
|
|
|
|
|
*ratio_den = st->den_rate;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
|
|
|
|
|
EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
|
|
|
|
|
{
|
|
|
|
|
if (quality > 10 || quality < 0)
|
|
|
|
|
return RESAMPLER_ERR_INVALID_ARG;
|
|
|
|
@ -1049,46 +1127,46 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
st->quality = quality;
|
|
|
|
|
if (st->initialised)
|
|
|
|
|
update_filter(st);
|
|
|
|
|
return update_filter(st);
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
|
|
|
|
|
EXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
|
|
|
|
|
{
|
|
|
|
|
*quality = st->quality;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride)
|
|
|
|
|
EXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride)
|
|
|
|
|
{
|
|
|
|
|
st->in_stride = stride;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride)
|
|
|
|
|
EXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride)
|
|
|
|
|
{
|
|
|
|
|
*stride = st->in_stride;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride)
|
|
|
|
|
EXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride)
|
|
|
|
|
{
|
|
|
|
|
st->out_stride = stride;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride)
|
|
|
|
|
EXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride)
|
|
|
|
|
{
|
|
|
|
|
*stride = st->out_stride;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_get_input_latency(SpeexResamplerState *st)
|
|
|
|
|
EXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st)
|
|
|
|
|
{
|
|
|
|
|
return st->filt_len / 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_get_output_latency(SpeexResamplerState *st)
|
|
|
|
|
EXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st)
|
|
|
|
|
{
|
|
|
|
|
return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_skip_zeros(SpeexResamplerState *st)
|
|
|
|
|
EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
for (i=0;i<st->nb_channels;i++)
|
|
|
|
@ -1096,15 +1174,21 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int speex_resampler_reset_mem(SpeexResamplerState *st)
|
|
|
|
|
EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st)
|
|
|
|
|
{
|
|
|
|
|
spx_uint32_t i;
|
|
|
|
|
for (i=0;i<st->nb_channels;i++)
|
|
|
|
|
{
|
|
|
|
|
st->last_sample[i] = 0;
|
|
|
|
|
st->magic_samples[i] = 0;
|
|
|
|
|
st->samp_frac_num[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
|
|
|
|
|
st->mem[i] = 0;
|
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const char *speex_resampler_strerror(int err)
|
|
|
|
|
EXPORT const char *speex_resampler_strerror(int err)
|
|
|
|
|
{
|
|
|
|
|
switch (err)
|
|
|
|
|
{
|
|
|
|
|