formatting fixups (bug #4769)

git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@6184 65c4cc65-6c06-0410-ace0-fbb531ad65f3
1.2-netsec
Russell Bryant 20 years ago
parent 6eb0ec533e
commit 4f007c8192

325
plc.c

@ -54,205 +54,198 @@ ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#endif #endif
/* We do a straight line fade to zero volume in 50ms when we are filling in for missing data. */ /* We do a straight line fade to zero volume in 50ms when we are filling in for missing data. */
#define ATTENUATION_INCREMENT 0.0025 /* Attenuation per sample */ #define ATTENUATION_INCREMENT 0.0025 /* Attenuation per sample */
#define ms_to_samples(t) (((t)*SAMPLE_RATE)/1000) #define ms_to_samples(t) (((t)*SAMPLE_RATE)/1000)
static inline int16_t fsaturate(double damp) static inline int16_t fsaturate(double damp)
{ {
if (damp > 32767.0) if (damp > 32767.0)
return INT16_MAX; return INT16_MAX;
if (damp < -32768.0) if (damp < -32768.0)
return INT16_MIN; return INT16_MIN;
return (int16_t) rint(damp); return (int16_t) rint(damp);
} }
static void save_history(plc_state_t *s, int16_t *buf, int len) static void save_history(plc_state_t *s, int16_t *buf, int len)
{ {
if (len >= PLC_HISTORY_LEN) if (len >= PLC_HISTORY_LEN) {
{ /* Just keep the last part of the new data, starting at the beginning of the buffer */
/* Just keep the last part of the new data, starting at the beginning of the buffer */ memcpy(s->history, buf + len - PLC_HISTORY_LEN, sizeof(int16_t)*PLC_HISTORY_LEN);
memcpy(s->history, buf + len - PLC_HISTORY_LEN, sizeof(int16_t)*PLC_HISTORY_LEN); s->buf_ptr = 0;
s->buf_ptr = 0; return;
return; }
} if (s->buf_ptr + len > PLC_HISTORY_LEN) {
if (s->buf_ptr + len > PLC_HISTORY_LEN) /* Wraps around - must break into two sections */
{ memcpy(s->history + s->buf_ptr, buf, sizeof(int16_t)*(PLC_HISTORY_LEN - s->buf_ptr));
/* Wraps around - must break into two sections */ len -= (PLC_HISTORY_LEN - s->buf_ptr);
memcpy(s->history + s->buf_ptr, buf, sizeof(int16_t)*(PLC_HISTORY_LEN - s->buf_ptr)); memcpy(s->history, buf + (PLC_HISTORY_LEN - s->buf_ptr), sizeof(int16_t)*len);
len -= (PLC_HISTORY_LEN - s->buf_ptr); s->buf_ptr = len;
memcpy(s->history, buf + (PLC_HISTORY_LEN - s->buf_ptr), sizeof(int16_t)*len); return;
s->buf_ptr = len; }
return; /* Can use just one section */
} memcpy(s->history + s->buf_ptr, buf, sizeof(int16_t)*len);
/* Can use just one section */ s->buf_ptr += len;
memcpy(s->history + s->buf_ptr, buf, sizeof(int16_t)*len);
s->buf_ptr += len;
} }
/*- End of function --------------------------------------------------------*/ /*- End of function --------------------------------------------------------*/
static void normalise_history(plc_state_t *s) static void normalise_history(plc_state_t *s)
{ {
int16_t tmp[PLC_HISTORY_LEN]; int16_t tmp[PLC_HISTORY_LEN];
if (s->buf_ptr == 0) if (s->buf_ptr == 0)
return; return;
memcpy(tmp, s->history, sizeof(int16_t)*s->buf_ptr); memcpy(tmp, s->history, sizeof(int16_t)*s->buf_ptr);
memcpy(s->history, s->history + s->buf_ptr, sizeof(int16_t)*(PLC_HISTORY_LEN - s->buf_ptr)); memcpy(s->history, s->history + s->buf_ptr, sizeof(int16_t)*(PLC_HISTORY_LEN - s->buf_ptr));
memcpy(s->history + PLC_HISTORY_LEN - s->buf_ptr, tmp, sizeof(int16_t)*s->buf_ptr); memcpy(s->history + PLC_HISTORY_LEN - s->buf_ptr, tmp, sizeof(int16_t)*s->buf_ptr);
s->buf_ptr = 0; s->buf_ptr = 0;
} }
/*- End of function --------------------------------------------------------*/ /*- End of function --------------------------------------------------------*/
static int __inline__ amdf_pitch(int min_pitch, int max_pitch, int16_t amp[], int len) static int __inline__ amdf_pitch(int min_pitch, int max_pitch, int16_t amp[], int len)
{ {
int i; int i;
int j; int j;
int acc; int acc;
int min_acc; int min_acc;
int pitch; int pitch;
pitch = min_pitch; pitch = min_pitch;
min_acc = INT_MAX; min_acc = INT_MAX;
for (i = max_pitch; i <= min_pitch; i++) for (i = max_pitch; i <= min_pitch; i++) {
{ acc = 0;
acc = 0; for (j = 0; j < len; j++)
for (j = 0; j < len; j++) acc += abs(amp[i + j] - amp[j]);
acc += abs(amp[i + j] - amp[j]); if (acc < min_acc) {
if (acc < min_acc) min_acc = acc;
{ pitch = i;
min_acc = acc; }
pitch = i; }
} return pitch;
}
return pitch;
} }
/*- End of function --------------------------------------------------------*/ /*- End of function --------------------------------------------------------*/
int plc_rx(plc_state_t *s, int16_t amp[], int len) int plc_rx(plc_state_t *s, int16_t amp[], int len)
{ {
int i; int i;
int pitch_overlap; int pitch_overlap;
float old_step; float old_step;
float new_step; float new_step;
float old_weight; float old_weight;
float new_weight; float new_weight;
float gain; float gain;
if (s->missing_samples) if (s->missing_samples) {
{ /* Although we have a real signal, we need to smooth it to fit well
/* Although we have a real signal, we need to smooth it to fit well with the synthetic signal we used for the previous block */
with the synthetic signal we used for the previous block */
/* The start of the real data is overlapped with the next 1/4 cycle
/* The start of the real data is overlapped with the next 1/4 cycle of the synthetic data. */
of the synthetic data. */ pitch_overlap = s->pitch >> 2;
pitch_overlap = s->pitch >> 2; if (pitch_overlap > len)
if (pitch_overlap > len) pitch_overlap = len;
pitch_overlap = len; gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT;
gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT; if (gain < 0.0)
if (gain < 0.0) gain = 0.0;
gain = 0.0; new_step = 1.0/pitch_overlap;
new_step = 1.0/pitch_overlap; old_step = new_step*gain;
old_step = new_step*gain; new_weight = new_step;
new_weight = new_step; old_weight = (1.0 - new_step)*gain;
old_weight = (1.0 - new_step)*gain; for (i = 0; i < pitch_overlap; i++) {
for (i = 0; i < pitch_overlap; i++) amp[i] = fsaturate(old_weight*s->pitchbuf[s->pitch_offset] + new_weight*amp[i]);
{ if (++s->pitch_offset >= s->pitch)
amp[i] = fsaturate(old_weight*s->pitchbuf[s->pitch_offset] + new_weight*amp[i]); s->pitch_offset = 0;
if (++s->pitch_offset >= s->pitch) new_weight += new_step;
s->pitch_offset = 0; old_weight -= old_step;
new_weight += new_step; if (old_weight < 0.0)
old_weight -= old_step; old_weight = 0.0;
if (old_weight < 0.0) }
old_weight = 0.0; s->missing_samples = 0;
} }
s->missing_samples = 0; save_history(s, amp, len);
} return len;
save_history(s, amp, len);
return len;
} }
/*- End of function --------------------------------------------------------*/ /*- End of function --------------------------------------------------------*/
int plc_fillin(plc_state_t *s, int16_t amp[], int len) int plc_fillin(plc_state_t *s, int16_t amp[], int len)
{ {
int i; int i;
int pitch_overlap; int pitch_overlap;
float old_step; float old_step;
float new_step; float new_step;
float old_weight; float old_weight;
float new_weight; float new_weight;
float gain; float gain;
int16_t *orig_amp; int16_t *orig_amp;
int orig_len; int orig_len;
orig_amp = amp; orig_amp = amp;
orig_len = len; orig_len = len;
if (s->missing_samples == 0) if (s->missing_samples == 0) {
{ /* As the gap in real speech starts we need to assess the last known pitch,
/* As the gap in real speech starts we need to assess the last known pitch, and prepare the synthetic data we will use for fill-in */
and prepare the synthetic data we will use for fill-in */ normalise_history(s);
normalise_history(s); s->pitch = amdf_pitch(PLC_PITCH_MIN, PLC_PITCH_MAX, s->history + PLC_HISTORY_LEN - CORRELATION_SPAN - PLC_PITCH_MIN, CORRELATION_SPAN);
s->pitch = amdf_pitch(PLC_PITCH_MIN, PLC_PITCH_MAX, s->history + PLC_HISTORY_LEN - CORRELATION_SPAN - PLC_PITCH_MIN, CORRELATION_SPAN); /* We overlap a 1/4 wavelength */
/* We overlap a 1/4 wavelength */ pitch_overlap = s->pitch >> 2;
pitch_overlap = s->pitch >> 2; /* Cook up a single cycle of pitch, using a single of the real signal with 1/4
/* Cook up a single cycle of pitch, using a single of the real signal with 1/4 cycle OLA'ed to make the ends join up nicely */
cycle OLA'ed to make the ends join up nicely */ /* The first 3/4 of the cycle is a simple copy */
/* The first 3/4 of the cycle is a simple copy */ for (i = 0; i < s->pitch - pitch_overlap; i++)
for (i = 0; i < s->pitch - pitch_overlap; i++) s->pitchbuf[i] = s->history[PLC_HISTORY_LEN - s->pitch + i];
s->pitchbuf[i] = s->history[PLC_HISTORY_LEN - s->pitch + i]; /* The last 1/4 of the cycle is overlapped with the end of the previous cycle */
/* The last 1/4 of the cycle is overlapped with the end of the previous cycle */ new_step = 1.0/pitch_overlap;
new_step = 1.0/pitch_overlap; new_weight = new_step;
new_weight = new_step; for ( ; i < s->pitch; i++) {
for ( ; i < s->pitch; i++) s->pitchbuf[i] = s->history[PLC_HISTORY_LEN - s->pitch + i]*(1.0 - new_weight) + s->history[PLC_HISTORY_LEN - 2*s->pitch + i]*new_weight;
{ new_weight += new_step;
s->pitchbuf[i] = s->history[PLC_HISTORY_LEN - s->pitch + i]*(1.0 - new_weight) + s->history[PLC_HISTORY_LEN - 2*s->pitch + i]*new_weight; }
new_weight += new_step; /* We should now be ready to fill in the gap with repeated, decaying cycles
} of what is in pitchbuf */
/* We should now be ready to fill in the gap with repeated, decaying cycles
of what is in pitchbuf */ /* We need to OLA the first 1/4 wavelength of the synthetic data, to smooth
it into the previous real data. To avoid the need to introduce a delay
/* We need to OLA the first 1/4 wavelength of the synthetic data, to smooth in the stream, reverse the last 1/4 wavelength, and OLA with that. */
it into the previous real data. To avoid the need to introduce a delay gain = 1.0;
in the stream, reverse the last 1/4 wavelength, and OLA with that. */ new_step = 1.0/pitch_overlap;
gain = 1.0; old_step = new_step;
new_step = 1.0/pitch_overlap; new_weight = new_step;
old_step = new_step; old_weight = 1.0 - new_step;
new_weight = new_step; for (i = 0; i < pitch_overlap; i++) {
old_weight = 1.0 - new_step; amp[i] = fsaturate(old_weight*s->history[PLC_HISTORY_LEN - 1 - i] + new_weight*s->pitchbuf[i]);
for (i = 0; i < pitch_overlap; i++) new_weight += new_step;
{ old_weight -= old_step;
amp[i] = fsaturate(old_weight*s->history[PLC_HISTORY_LEN - 1 - i] + new_weight*s->pitchbuf[i]); if (old_weight < 0.0)
new_weight += new_step; old_weight = 0.0;
old_weight -= old_step; }
if (old_weight < 0.0) s->pitch_offset = i;
old_weight = 0.0; } else {
} gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT;
s->pitch_offset = i; i = 0;
} }
else for ( ; gain > 0.0 && i < len; i++) {
{ amp[i] = s->pitchbuf[s->pitch_offset]*gain;
gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT; gain -= ATTENUATION_INCREMENT;
i = 0; if (++s->pitch_offset >= s->pitch)
} s->pitch_offset = 0;
for ( ; gain > 0.0 && i < len; i++) }
{ for ( ; i < len; i++)
amp[i] = s->pitchbuf[s->pitch_offset]*gain; amp[i] = 0;
gain -= ATTENUATION_INCREMENT; s->missing_samples += orig_len;
if (++s->pitch_offset >= s->pitch) save_history(s, amp, len);
s->pitch_offset = 0; return len;
}
for ( ; i < len; i++)
amp[i] = 0;
s->missing_samples += orig_len;
save_history(s, amp, len);
return len;
} }
/*- End of function --------------------------------------------------------*/ /*- End of function --------------------------------------------------------*/
plc_state_t *plc_init(plc_state_t *s) plc_state_t *plc_init(plc_state_t *s)
{ {
memset(s, 0, sizeof(*s)); memset(s, 0, sizeof(*s));
return s; return s;
} }
/*- End of function --------------------------------------------------------*/ /*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/

Loading…
Cancel
Save