You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sems/core/AmDtmfDetector.cpp

831 lines
23 KiB

/*
* Copyright (C) 2002-2003 Fhg Fokus (inband detector code)
* Copyright (C) 2005 Andriy I Pylypenko
* Copyright (C) 2007 iptego GmbH
*
* This file is part of SEMS, a free SIP media server.
*
* SEMS is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version. This program is released under
* the GPL with the additional exemption that compiling, linking,
* and/or using OpenSSL is allowed.
*
* For a license to use the SEMS software under conditions
* other than those described here, or to purchase support for this
* software, please contact iptel.org by e-mail at the following addresses:
* info@iptel.org
*
* SEMS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "AmDtmfDetector.h"
#include "AmSession.h"
#include "log.h"
#include <arpa/inet.h>
#include <netinet/in.h>
#include <math.h>
#include <sys/time.h>
// per RFC this is 5000ms, but in reality then
// one needs to wait 5 sec on the first keypress
// (e.g. due to a bug on recent snoms)
#define MAX_INFO_DTMF_LENGTH 1000
//
// AmDtmfEventQueue methods
//
AmDtmfEventQueue::AmDtmfEventQueue(AmDtmfDetector *handler)
: AmEventQueue(handler), m_detector(handler)
{
}
void AmDtmfEventQueue::processEvents()
{
AmDtmfDetector *local_handler = reinterpret_cast<AmDtmfDetector *>(handler);
local_handler->checkTimeout();
AmEventQueue::processEvents();
}
void AmDtmfEventQueue::putDtmfAudio(const unsigned char *buf, int size, unsigned long long system_ts)
{
m_detector->putDtmfAudio(buf, size, system_ts);
}
//
// AmSipDtmfEvent methods
//
AmSipDtmfEvent::AmSipDtmfEvent(const string& request_body)
: AmDtmfEvent(Dtmf::SOURCE_SIP)
{
parseRequestBody(request_body);
}
void AmSipDtmfEvent::parseRequestBody(const string& request_body)
{
string::size_type start = 0;
string::size_type stop = 0;
while ((stop = request_body.find('\n', start)) != string::npos)
{
parseLine(request_body.substr(start, stop - start));
start = stop + 1;
}
if (start < request_body.length())
{
// last chunk was not ended with '\n'
parseLine(request_body.substr(start, string::npos));
}
}
void AmSipDtmfEvent::parseLine(const string& line)
{
static const string KeySignal("Signal=");
static const string KeyDuration("Duration=");
if (line.length() > KeySignal.length() &&
line.substr(0, KeySignal.length()) == KeySignal)
{
string event(line.substr(KeySignal.length(), string::npos));
switch (event.c_str()[0])
{
case '*':
m_event = 10;
break;
case '#':
m_event = 11;
break;
case 'A':
case 'a':
m_event = 12;
break;
case 'B':
case 'b':
m_event = 13;
break;
case 'C':
case 'c':
m_event = 14;
break;
case 'D':
case 'd':
m_event = 15;
break;
default:
m_event = atol(event.c_str());
}
}
else if (line.length() > KeyDuration.length() &&
line.substr(0, KeyDuration.length()) == KeyDuration)
{
m_duration_msec = atol(line.substr(KeyDuration.length(), string::npos).c_str());
if (m_duration_msec > MAX_INFO_DTMF_LENGTH)
m_duration_msec = MAX_INFO_DTMF_LENGTH;
}
}
//
// AmRtpDtmfEvent methods
//
AmRtpDtmfEvent::AmRtpDtmfEvent(const dtmf_payload_t *payload, int sample_rate, unsigned int ts)
: AmDtmfEvent(Dtmf::SOURCE_RTP)
{
m_duration_msec = ntohs(payload->duration) * 1000 / sample_rate;
m_e = payload->e;
m_volume = payload->volume;
m_event = payload->event;
m_ts = ts;
// RFC 2833:
// R: This field is reserved for future use. The sender MUST set it
// to zero, the receiver MUST ignore it.
// m_r = payload->r;
}
//
// AmSipDtmfDetector methods
//
AmSipDtmfDetector::AmSipDtmfDetector(AmKeyPressSink *keysink)
: m_keysink(keysink)
{
}
void AmSipDtmfDetector::process(AmSipDtmfEvent *evt)
{
struct timeval start;
struct timeval stop;
gettimeofday(&start, NULL);
// stop = start + duration
memcpy(&stop, &start, sizeof(struct timeval));
stop.tv_usec += evt->duration() * 1000;
if (stop.tv_usec > 1000000)
{
++stop.tv_sec;
stop.tv_usec -= 1000000;
}
m_keysink->registerKeyReleased(evt->event(), Dtmf::SOURCE_SIP, start, stop);
}
//
// AmDtmfDetector methods
//
AmDtmfDetector::AmDtmfDetector(AmDtmfSink *dtmf_sink)
: m_dtmfSink(dtmf_sink), m_rtpDetector(this),
m_sipDetector(this),
m_inband_type(Dtmf::SEMSInternal),
m_startTime{0,0},
m_lastReportTime{0,0},
m_currentEvent(-1), m_eventPending(false),
m_current_eventid_i(false), m_current_eventid(-1),
m_sipEventReceived(false),
m_inbandEventReceived(false), m_rtpEventReceived(false)
{
//#ifndef USE_SPANDSP
// setInbandDetector(Dtmf::SEMSInternal, m_session->RTPStream()->getSampleRate());
//#else
// setInbandDetector(AmConfig::DefaultDTMFDetector, m_session->RTPStream()->getSampleRate());
//#endif
}
void AmDtmfDetector::setInbandDetector(Dtmf::InbandDetectorType t, int sample_rate) {
#ifndef USE_SPANDSP
if (t == Dtmf::SpanDSP) {
ERROR("trying to use spandsp DTMF detector without support for it"
"recompile with -D USE_SPANDSP\n");
}
if (!m_inbandDetector.get())
m_inbandDetector.reset(new AmSemsInbandDtmfDetector(this, sample_rate));
return;
#else
if ((t != m_inband_type) || (!m_inbandDetector.get())) {
if (t == Dtmf::SEMSInternal) {
DBG("Setting internal DTMF detector\n");
m_inbandDetector.reset(new AmSemsInbandDtmfDetector(this, sample_rate));
} else { // if t == SpanDSP
DBG("Setting spandsp DTMF detector\n");
m_inbandDetector.reset(new AmSpanDSPInbandDtmfDetector(this, sample_rate));
}
m_inband_type = t;
}
#endif
}
void AmDtmfDetector::process(AmEvent *evt)
{
AmDtmfEvent *event = dynamic_cast<AmDtmfEvent *>(evt);
if (NULL == event)
return;
switch (event->event_id)
{
case Dtmf::SOURCE_RTP:
m_rtpDetector.process(dynamic_cast<AmRtpDtmfEvent *>(event));
break;
// case AmDtmfEvent::INBAND:
// m_audioDetector.process(dynamic_cast<AmAudioDtmfEvent *>(event));
// break;
case Dtmf::SOURCE_SIP:
m_sipDetector.process(dynamic_cast<AmSipDtmfEvent *>(event));
break;
}
evt->processed = true;
}
void AmDtmfDetector::flushKey(unsigned int event_id) {
// flush the current key if it corresponds to the one with event_id
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("flushKey\n");
#endif
if (m_eventPending && m_current_eventid_i && event_id == m_current_eventid) {
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("flushKey - reportEvent()\n");
#endif
reportEvent();
}
}
void AmDtmfDetector::registerKeyReleased(int event, Dtmf::EventSource source,
const struct timeval& start,
const struct timeval& stop,
bool has_eventid, unsigned int event_id)
{
// Old event has not been sent yet
// push out it now
if ((m_eventPending && m_currentEvent != event) ||
(m_eventPending && has_eventid && m_current_eventid_i && (event_id != m_current_eventid))) {
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("event differs - reportEvent()\n");
#endif
reportEvent();
}
m_eventPending = true;
m_currentEvent = event;
if (has_eventid) {
m_current_eventid_i = true;
m_current_eventid = event_id;
}
if(timercmp(&start,&stop,<)){
memcpy(&m_startTime, &start, sizeof(struct timeval));
memcpy(&m_lastReportTime, &stop, sizeof(struct timeval));
}
else {
memcpy(&m_startTime, &stop, sizeof(struct timeval));
memcpy(&m_lastReportTime, &start, sizeof(struct timeval));
}
switch (source)
{
case Dtmf::SOURCE_SIP:
m_sipEventReceived = true;
break;
case Dtmf::SOURCE_RTP:
m_rtpEventReceived = true;
break;
case Dtmf::SOURCE_INBAND:
m_inbandEventReceived = true;
break;
default:
break;
}
}
void AmDtmfDetector::registerKeyPressed(int event, Dtmf::EventSource type, bool has_eventid, unsigned int event_id)
{
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("registerKeyPressed(%d, .., %s, %u); m_eventPending=%s, m_currentEvent=%d, "
"m_current_eventid=%u,m_current_eventid_i=%s\n",
event, has_eventid?"true":"false", event_id, m_eventPending?"true":"false",
m_currentEvent, m_current_eventid, m_current_eventid_i?"true":"false");
#endif
struct timeval tm;
gettimeofday(&tm, NULL);
if (!m_eventPending)
{
m_eventPending = true;
m_currentEvent = event;
memcpy(&m_startTime, &tm, sizeof(struct timeval));
memcpy(&m_lastReportTime, &tm, sizeof(struct timeval));
}
else
{
// Old event has not been sent yet
// push out it now
if ((m_currentEvent != event) ||
(has_eventid && m_current_eventid_i && (event_id != m_current_eventid))) {
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("event differs - reportEvent() from key pressed\n");
#endif
reportEvent();
}
long delta_msec = (tm.tv_sec - m_lastReportTime.tv_sec) * 1000 +
(tm.tv_usec - m_lastReportTime.tv_usec) / 1000;
// SIP INFO can report stop time is in future so avoid changing
// m_lastReportTime during that period
if (delta_msec > 0)
memcpy(&m_lastReportTime, &tm, sizeof(struct timeval));
}
if (has_eventid) {
m_current_eventid_i = true;
m_current_eventid = event_id;
}
}
void AmDtmfDetector::checkTimeout()
{
m_rtpDetector.checkTimeout();
if (m_eventPending)
{
if (m_sipEventReceived && m_rtpEventReceived && m_inbandEventReceived)
{
// all three methods triggered - do not wait until timeout
reportEvent();
}
else
{
// ... else wait until timeout
struct timeval tm;
gettimeofday(&tm, NULL);
long delta_msec = (tm.tv_sec - m_lastReportTime.tv_sec) * 1000 +
(tm.tv_usec - m_lastReportTime.tv_usec) / 1000;
if (delta_msec > WAIT_TIMEOUT)
reportEvent();
}
}
}
void AmDtmfDetector::reportEvent()
{
m_reportLock.lock();
if (m_eventPending) {
long duration = (m_lastReportTime.tv_sec - m_startTime.tv_sec) * 1000 +
(m_lastReportTime.tv_usec - m_startTime.tv_usec) / 1000;
m_dtmfSink->postDtmfEvent(new AmDtmfEvent(m_currentEvent, duration));
m_eventPending = false;
m_sipEventReceived = false;
m_rtpEventReceived = false;
m_inbandEventReceived = false;
m_current_eventid_i = false;
}
m_reportLock.unlock();
}
void AmDtmfDetector::putDtmfAudio(const unsigned char *buf, int size, unsigned long long system_ts)
{
if (m_inbandDetector.get()) {
m_inbandDetector->streamPut(buf, size, system_ts);
} else {
DBG("warning: trying to put DTMF into non-initialized DTMF detector\n");
}
}
// AmRtpDtmfDetector methods
AmRtpDtmfDetector::AmRtpDtmfDetector(AmKeyPressSink *keysink)
: m_keysink(keysink), m_eventPending(false), m_packetCount(0),
m_currentTS(0), m_currentTS_i(false), m_lastTS_i(false)
{
}
void AmRtpDtmfDetector::process(AmRtpDtmfEvent *evt)
{
if (evt && evt->volume() < 55) // From RFC 2833:
// The range of valid DTMF is from 0 to -36 dBm0 (must
// accept); lower than -55 dBm0 must be rejected (TR-TSY-000181,
// ITU-T Q.24A)
{
m_packetCount = 0; // reset idle packet counter
if (m_lastTS_i && m_lastTS == evt->ts()) {
// ignore events from past key press which was already reported
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("ignore RTP event ts ==%u\n", evt->ts());
#endif
return;
}
if (!m_eventPending)
{
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("new m_eventPending, event()==%d, ts=%u\n", evt->event(), evt->ts());
#endif
gettimeofday(&m_startTime, NULL);
m_eventPending = true;
m_currentEvent = evt->event();
m_currentTS = evt->ts();
m_currentTS_i = true;
}
else
{
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("RTP event, event()==%d, m_currentEvent == %d, m_currentTS_i=%s, "
"evt->ts=%u, m_currentTS=%u\n",
evt->event(), m_currentEvent, m_currentTS_i?"true":"false",
evt->ts(), m_currentTS);
#endif
if ((evt->event() != m_currentEvent) ||
(m_currentTS_i && (evt->ts() != m_currentTS)))
{
// Previous event does not end correctly so send out it now...
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("flushKey %u\n", m_currentTS);
#endif
m_keysink->flushKey(m_currentTS);
// ... and reinitialize to process current event
gettimeofday(&m_startTime, NULL);
m_eventPending = true;
m_currentEvent = evt->event();
m_currentTS = evt->ts();
m_currentTS_i = true;
}
}
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("registerKeyPressed %d, %u\n", m_currentEvent, m_currentTS);
#endif
m_keysink->registerKeyPressed(m_currentEvent, Dtmf::SOURCE_RTP, true, m_currentTS);
}
}
void AmRtpDtmfDetector::sendPending()
{
if (m_eventPending)
{
struct timeval end_time;
gettimeofday(&end_time, NULL);
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("registerKeyReleased(%d, ... %u)\n", m_currentEvent, m_currentTS);
#endif
m_keysink->registerKeyReleased(m_currentEvent, Dtmf::SOURCE_RTP, m_startTime, end_time, true, m_currentTS);
m_eventPending = false;
m_currentTS_i = false;
m_lastTS = m_currentTS;
m_lastTS_i = true;
}
}
void AmRtpDtmfDetector::checkTimeout()
{
if (m_eventPending && m_packetCount++ > MAX_PACKET_WAIT)
{
#ifdef EXCESSIVE_DTMF_DEBUGINFO
DBG("idle timeout ... sendPending()\n");
#endif
sendPending();
}
}
//
// AmInbandDtmfDetector methods
AmInbandDtmfDetector::AmInbandDtmfDetector(AmKeyPressSink *keysink)
: m_keysink(keysink)
{
}
//
// -------------------------------------------------------------------------------------------
#define IVR_DTMF_ASTERISK 10
#define IVR_DTMF_HASH 11
#define IVR_DTMF_A 12
#define IVR_DTMF_B 13
#define IVR_DTMF_C 14
#define IVR_DTMF_D 15
/* the detector returns these values */
static int IVR_dtmf_matrix[4][4] =
{
{ 1, 2, 3, IVR_DTMF_A},
{ 4, 5, 6, IVR_DTMF_B},
{ 7, 8, 9, IVR_DTMF_C},
{IVR_DTMF_ASTERISK, 0, IVR_DTMF_HASH, IVR_DTMF_D}
};
#define LOGRP 0
#define HIGRP 1
#define REL_DTMF_TRESH 4000 /* above this is dtmf */
#define REL_SILENCE_TRESH 200 /* below this is silence */
#define REL_AMP_BITS 9 /* bits per sample, reduced to avoid overflow */
#define PI 3.1415926
#define NELEMSOF(x) (sizeof(x)/sizeof(*x))
/** \brief DTMF tone filter type */
typedef struct {
int freq; /* frequency */
int grp; /* low/high group */
} dtmf_t;
static dtmf_t dtmf_tones[8] =
{
{ 697, LOGRP},
{ 770, LOGRP},
{ 852, LOGRP},
{ 941, LOGRP},
{1209, HIGRP},
{1336, HIGRP},
{1477, HIGRP},
{1633, HIGRP}
};
static char dtmf_matrix[4][4] =
{
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}
};
AmSemsInbandDtmfDetector::AmSemsInbandDtmfDetector(AmKeyPressSink *keysink, int sample_rate)
: AmInbandDtmfDetector(keysink),
SAMPLERATE(sample_rate),
m_buf(),
m_last(' '),
m_idx(0),
m_result(),
m_lastCode(0),
m_last_ts(0),
m_count(0)
{
/* precalculate 2 * cos (2 PI k / N) */
for(unsigned i = 0; i < NELEMSOF(rel_cos2pik); i++) {
// FIXME: fixed samplerate. won't work for wideband
int k = (int)((double)dtmf_tones[i].freq * REL_DTMF_NPOINTS / SAMPLERATE + 0.5);
rel_cos2pik[i] = (int)(2 * 32768 * cos(2 * PI * k / REL_DTMF_NPOINTS));
}
}
AmSemsInbandDtmfDetector::~AmSemsInbandDtmfDetector() {
}
/*
* Goertzel algorithm.
* See http://ptolemy.eecs.berkeley.edu/~pino/Ptolemy/papers/96/dtmf_ict/
* for more info.
*/
void AmSemsInbandDtmfDetector::isdn_audio_goertzel_relative()
{
int sk, sk1, sk2;
for (int k = 0; k < REL_NCOEFF; k++) {
// like m_buf, sk..sk2 are in (32-REL_AMP_BITS).REL_AMP_BITS fixed-point format
sk = sk1 = sk2 = 0;
for (int n = 0; n < REL_DTMF_NPOINTS; n++) {
sk = m_buf[n] + ((rel_cos2pik[k] * sk1) >> 15) - sk2;
sk2 = sk1;
sk1 = sk;
}
/* Avoid overflows */
sk >>= 1;
sk2 >>= 1;
/* compute |X(k)|**2 */
/* report overflows. This should not happen. */
/* Comment this out if desired */
/*if (sk < -32768 || sk > 32767)
DBG("isdn_audio: dtmf goertzel overflow, sk=%d\n", sk);
if (sk2 < -32768 || sk2 > 32767)
DBG("isdn_audio: dtmf goertzel overflow, sk2=%d\n", sk2);
*/
// note that the result still is in (32-REL_AMP_BITS).REL_AMP_BITS format
m_result[k] =
((sk * sk) >> REL_AMP_BITS) -
((((rel_cos2pik[k] * sk) >> 15) * sk2) >> REL_AMP_BITS) +
((sk2 * sk2) >> REL_AMP_BITS);
}
}
void AmSemsInbandDtmfDetector::isdn_audio_eval_dtmf_relative()
{
int silence;
int grp[2];
char what;
int thresh;
grp[LOGRP] = grp[HIGRP] = -1;
silence = 0;
thresh = 0;
for (int i = 0; i < REL_NCOEFF; i++)
{
if (m_result[i] > REL_DTMF_TRESH) {
if (m_result[i] > thresh)
thresh = m_result[i];
}
else if (m_result[i] < REL_SILENCE_TRESH)
silence++;
}
if (silence == REL_NCOEFF)
what = ' ';
else {
if (thresh > 0) {
thresh = thresh >> 4; /* touchtones must match within 12 dB */
for (int i = 0; i < REL_NCOEFF; i++) {
if (m_result[i] < thresh)
continue; /* ignore */
/* good level found. This is allowed only one time per group */
if (i < REL_NCOEFF / 2) {
/* lowgroup*/
if (grp[LOGRP] >= 0) {
// Bad. Another tone found. */
grp[LOGRP] = -1;
break;
}
else
grp[LOGRP] = i;
}
else { /* higroup */
if (grp[HIGRP] >= 0) { // Bad. Another tone found. */
grp[HIGRP] = -1;
break;
}
else
grp[HIGRP] = i - REL_NCOEFF/2;
}
}
if ((grp[LOGRP] >= 0) && (grp[HIGRP] >= 0)) {
what = dtmf_matrix[grp[LOGRP]][grp[HIGRP]];
m_lastCode = IVR_dtmf_matrix[grp[LOGRP]][grp[HIGRP]];
if (what != m_last)
{
m_startTime.tv_sec = m_last_ts / SAMPLERATE;
m_startTime.tv_usec = ((m_last_ts * 10000) / (SAMPLERATE/100))
% 1000000;
}
} else
what = '.';
}
else
what = '.';
}
if (what != ' ' && what != '.')
{
if (++m_count >= DTMF_INTERVAL)
{
m_keysink->registerKeyPressed(m_lastCode, Dtmf::SOURCE_INBAND);
}
}
else
{
if (m_last != ' ' && m_last != '.' && m_count >= DTMF_INTERVAL)
{
struct timeval stop;
stop.tv_sec = m_last_ts / SAMPLERATE;
stop.tv_usec = ((m_last_ts * 10000) / (SAMPLERATE/100)) % 1000000;
m_keysink->registerKeyReleased(m_lastCode, Dtmf::SOURCE_INBAND, m_startTime, stop);
}
m_count = 0;
}
m_last = what;
}
void AmSemsInbandDtmfDetector::isdn_audio_calc_dtmf(const signed short* buf, int len, unsigned int ts)
{
int c;
if(m_idx == 0) m_last_ts = ts;
while (len) {
c = (len < ((int)NELEMSOF(m_buf) - m_idx)) ? len : (NELEMSOF(m_buf) - m_idx);
if (c <= 0) break;
for (int i = 0; i < c; i++) {
// m_buf is in (32-REL_AMP_BITS).REL_AMP_BITS fixed-point format, the samples
// itself are in the last REL_AMP_BITS bits, i.e. they go from -1.0 to +1.0
// (or more exactly from -1.0 to ~+0.996)
m_buf[m_idx++] = (*buf++) >> (15 - REL_AMP_BITS);
}
if (m_idx == NELEMSOF(m_buf)) {
isdn_audio_goertzel_relative();
isdn_audio_eval_dtmf_relative();
m_idx = 0;
m_last_ts = ts + c;
}
len -= c;
ts += c;
}
}
int AmSemsInbandDtmfDetector::streamPut(const unsigned char* samples, unsigned int size, unsigned long long system_ts)
{
unsigned long long user_ts =
system_ts * ((unsigned long long)SAMPLERATE / 100)
/ (WALLCLOCK_RATE / 100);
isdn_audio_calc_dtmf((const signed short *)samples, size / 2, (unsigned int)user_ts);
return size;
}
#ifdef USE_SPANDSP
AmSpanDSPInbandDtmfDetector::AmSpanDSPInbandDtmfDetector(AmKeyPressSink *keysink, int sample_rate)
: AmInbandDtmfDetector(keysink)
{
#ifdef HAVE_OLD_SPANDSP_CALLBACK
rx_state = (dtmf_rx_state_t*)malloc(sizeof(dtmf_rx_state_t));
if (NULL == rx_state) {
throw string("error allocating memory for DTMF detector\n");
}
#else
rx_state = NULL;
#endif
rx_state = dtmf_rx_init(rx_state, NULL /* dtmf_rx_callback */, (void*)this);
if (rx_state==NULL) {
throw string("error allocating memory for DTMF detector\n");
}
dtmf_rx_set_realtime_callback(rx_state, tone_report_func, (void*)this);
}
AmSpanDSPInbandDtmfDetector::~AmSpanDSPInbandDtmfDetector() {
// not in 0.0.4:
// dtmf_rx_release(rx_state);
#ifdef HAVE_OLD_SPANDSP_CALLBACK
free(rx_state);
#else
dtmf_rx_free(rx_state);
#endif
}
int AmSpanDSPInbandDtmfDetector::streamPut(const unsigned char* samples, unsigned int size, unsigned long long system_ts) {
dtmf_rx(rx_state, (const int16_t*) samples, size/2);
return size;
}
#ifndef HAVE_OLD_SPANDSP_CALLBACK
void AmSpanDSPInbandDtmfDetector::tone_report_func(void *user_data, int code, int level, int delay) {
AmSpanDSPInbandDtmfDetector* o = (AmSpanDSPInbandDtmfDetector*)user_data;
o->tone_report_f(code, level, delay);
}
#else
void AmSpanDSPInbandDtmfDetector::tone_report_func(void *user_data, int code) {
AmSpanDSPInbandDtmfDetector* o = (AmSpanDSPInbandDtmfDetector*)user_data;
o->tone_report_f(code, 0, 0);
}
#endif
void AmSpanDSPInbandDtmfDetector::tone_report_f(int code, int level, int delay) {
// DBG("spandsp reports tone %c, %d, %d\n", code, level, delay);
if (code) { // key pressed
gettimeofday(&key_start, NULL);
m_lastCode = code;
// don't report key press - otherwise reported twice
// m_keysink->registerKeyPressed(char2int(code), Dtmf::SOURCE_INBAND);
} else { // released
struct timeval now;
gettimeofday(&now, NULL);
m_keysink->registerKeyReleased(char2int(m_lastCode), Dtmf::SOURCE_INBAND, key_start, now);
}
}
// uh, ugly
int AmSpanDSPInbandDtmfDetector::char2int(char code) {
if (code>='0' && code<='9')
return code-'0';
if (code == '#')
return IVR_DTMF_HASH;
if (code == '*')
return IVR_DTMF_ASTERISK;
if (code >= 'A' && code <= 'D')
return code-'A';
return code;
}
// unused - we use realtime reporting functions instead
// void AmSpanDSPInbandDtmfDetector::dtmf_rx_callback(void* user_data, const char* digits, int len) {
// AmSpanDSPInbandDtmfDetector* o = (AmSpanDSPInbandDtmfDetector*)user_data;
// o->dtmf_rx_f(digits, len);
// }
// void AmSpanDSPInbandDtmfDetector::dtmf_rx_f(const char* digits, int len) {
// DBG("dtmf_rx_callback len=%d\n", len);
// for (int i=0;i<len;i++)
// DBG("char %c\n", digits[i]);
// }
#endif // USE_SPANDSP