You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sems/core/AmAudio.cpp

539 lines
14 KiB

/*
* Copyright (C) 2002-2003 Fhg Fokus
*
* This file is part of SEMS, a free SIP media server.
*
* SEMS is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version. This program is released under
* the GPL with the additional exemption that compiling, linking,
* and/or using OpenSSL is allowed.
*
* For a license to use the SEMS software under conditions
* other than those described here, or to purchase support for this
* software, please contact iptel.org by e-mail at the following addresses:
* info@iptel.org
*
* SEMS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "AmAudio.h"
#include "AmPlugIn.h"
#include "AmUtils.h"
#include "AmSdp.h"
#include "AmRtpStream.h"
#include "AmConfig.h"
#include "amci/codecs.h"
#include "log.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <typeinfo>
/** \brief structure to hold loaded codec instances */
struct CodecContainer
{
amci_codec_t *codec;
int frame_size;
int frame_length;
int frame_encoded_size;
long h_codec;
};
AmAudioFormat::AmAudioFormat(int codec_id, unsigned int rate)
: channels(1),
codec_id(codec_id),
rate(rate),
codec(NULL),
sdp_format_parameters_out(NULL)
{
codec = getCodec();
}
AmAudioFormat::~AmAudioFormat()
{
destroyCodec();
}
void AmAudioFormat::setRate(unsigned int sample_rate)
{
rate = sample_rate;
}
unsigned int AmAudioFormat::calcBytesToRead(unsigned int needed_samples) const
{
if (codec && codec->samples2bytes)
return codec->samples2bytes(h_codec, needed_samples) * channels; // FIXME: channels
WARN("Cannot convert samples to bytes\n");
return needed_samples * channels;
}
unsigned int AmAudioFormat::bytes2samples(unsigned int bytes) const
{
if (codec && codec->bytes2samples)
return codec->bytes2samples(h_codec, bytes) / channels;
WARN("Cannot convert bytes to samples\n");
return bytes / channels;
}
bool AmAudioFormat::operator == (const AmAudioFormat& r) const
{
return ( codec && r.codec
&& (r.codec->id == codec->id)
&& (r.bytes2samples(1024) == bytes2samples(1024))
&& (r.channels == channels)
&& (r.rate == rate));
}
bool AmAudioFormat::operator != (const AmAudioFormat& r) const
{
return !(this->operator == (r));
}
void AmAudioFormat::initCodec()
{
amci_codec_fmt_info_t* fmt_i = NULL;
sdp_format_parameters_out = NULL; // reset
if( codec && codec->init ) {
if ((h_codec = (*codec->init)(sdp_format_parameters.c_str(),
&sdp_format_parameters_out, &fmt_i)) == -1) {
ERROR("could not initialize codec %i\n",codec->id);
} else {
if (NULL != sdp_format_parameters_out) {
DBG("negotiated fmt parameters '%s'\n", sdp_format_parameters_out);
}
}
}
}
void AmAudioFormat::destroyCodec()
{
if( codec && codec->destroy ){
(*codec->destroy)(h_codec);
h_codec = 0;
}
codec = NULL;
}
void AmAudioFormat::resetCodec() {
codec = NULL;
getCodec();
}
amci_codec_t* AmAudioFormat::getCodec()
{
if(!codec){
codec = AmPlugIn::instance()->codec(codec_id);
initCodec();
}
return codec;
}
long AmAudioFormat::getHCodec()
{
if(!codec)
getCodec();
return h_codec;
}
#ifdef USE_LIBSAMPLERATE
AmLibSamplerateResamplingState::AmLibSamplerateResamplingState()
: resample_state(NULL), resample_buf_samples(0), resample_out_buf_samples(0)
{
}
AmLibSamplerateResamplingState::~AmLibSamplerateResamplingState()
{
if (NULL != resample_state) {
src_delete(resample_state);
resample_state=NULL;
}
}
unsigned int AmLibSamplerateResamplingState::resample(unsigned char* samples, unsigned int s, double ratio)
{
DBG("resampling packet of size %d with ratio %f", s, ratio);
if (!resample_state) {
int src_error;
// for better quality but more CPU usage, use SRC_SINC_ converters
resample_state = src_new(SRC_LINEAR, 1, &src_error);
if (!resample_state) {
ERROR("samplerate initialization error: ");
}
}
if (resample_state) {
if (resample_buf_samples + PCM16_B2S(s) > PCM16_B2S(AUDIO_BUFFER_SIZE) * 2) {
WARN("resample input buffer overflow! (%lu)\n", resample_buf_samples + PCM16_B2S(s));
} else if (resample_out_buf_samples + (PCM16_B2S(s) * ratio) + 20 > PCM16_B2S(AUDIO_BUFFER_SIZE)) {
WARN("resample: possible output buffer overflow! (%lu)\n", (resample_out_buf_samples + (size_t) ((PCM16_B2S(s) * ratio)) + 20));
} else {
signed short* samples_s = (signed short*)samples;
src_short_to_float_array(samples_s, &resample_in[resample_buf_samples], PCM16_B2S(s));
resample_buf_samples += PCM16_B2S(s);
}
SRC_DATA src_data;
src_data.data_in = resample_in;
src_data.input_frames = resample_buf_samples;
src_data.data_out = &resample_out[resample_out_buf_samples];
src_data.output_frames = PCM16_B2S(AUDIO_BUFFER_SIZE);
src_data.src_ratio = ratio;
src_data.end_of_input = 0;
int src_err = src_process(resample_state, &src_data);
if (src_err) {
DBG("resample error: '%s'\n", src_strerror(src_err));
}else {
signed short* samples_s = (signed short*)(unsigned char*)samples;
resample_out_buf_samples += src_data.output_frames_gen;
s *= ratio;
src_float_to_short_array(resample_out, samples_s, PCM16_B2S(s));
DBG("resample: output_frames_gen = %ld", src_data.output_frames_gen);
if (resample_buf_samples != (unsigned int)src_data.input_frames_used) {
memmove(resample_in, &resample_in[src_data.input_frames_used],
(resample_buf_samples - src_data.input_frames_used) * sizeof(float));
}
resample_buf_samples = resample_buf_samples - src_data.input_frames_used;
if (resample_out_buf_samples != s) {
memmove(resample_out, &resample_out[PCM16_B2S(s)], (resample_out_buf_samples - PCM16_B2S(s)) * sizeof(float));
}
resample_out_buf_samples -= PCM16_B2S(s);
}
}
DBG("resample: output size is %d", s);
return s;
}
#endif
#ifdef USE_INTERNAL_RESAMPLER
AmInternalResamplerState::AmInternalResamplerState()
: rstate(NULL)
{
rstate = ResampleFactory::createResampleObj(true, 4.0, ResampleFactory::INTERPOL_SINC, ResampleFactory::SAMPLE_MONO);
}
AmInternalResamplerState::~AmInternalResamplerState()
{
if (rstate != NULL)
ResampleFactory::destroyResampleObj(rstate);
}
unsigned int AmInternalResamplerState::resample(unsigned char *samples, unsigned int s, double ratio)
{
if (rstate == NULL) {
ERROR("Uninitialized resampling state");
return s;
}
//DBG("Resampling with ration %f", ratio);
//DBG("Putting %d samples in the buffer", PCM16_B2S(s));
rstate->put_samples((signed short *)samples, PCM16_B2S(s));
s = rstate->resample((signed short *)samples, ratio, PCM16_B2S(s) * ratio);
//DBG("Returning %d samples", s);
return PCM16_S2B(s);
}
#endif
AmAudio::AmAudio()
: fmt(new AmAudioFormat(CODEC_PCM16)),
max_rec_time(-1),
rec_time(0),
input_resampling_state(nullptr),
output_resampling_state(nullptr)
{
}
AmAudio::AmAudio(AmAudioFormat *_fmt)
: fmt(_fmt),
max_rec_time(-1),
rec_time(0),
input_resampling_state(nullptr),
output_resampling_state(nullptr)
{
}
AmAudio::~AmAudio()
{
close();
}
void AmAudio::setFormat(AmAudioFormat* new_fmt) {
fmt.reset(new_fmt);
fmt->resetCodec();
}
void AmAudio::close()
{
}
// returns bytes read, else -1 if error (0 is OK)
int AmAudio::get(unsigned long long system_ts, unsigned char* buffer,
int output_sample_rate, unsigned int nb_samples)
{
int size = calcBytesToRead((int)((float)nb_samples * (float)getSampleRate()
/ (float)output_sample_rate));
unsigned int rd_ts = scaleSystemTS(system_ts);
//DBG("\tread(rd_ts = %10.u; size = %u)\n",rd_ts,size);
size = read(rd_ts,size);
if(size <= 0){
return size;
}
size = decode(size);
if(size < 0) {
DBG("decode returned %i\n",size);
return -1;
}
size = downMix(size);
size = resampleOutput((unsigned char*)samples, size,
getSampleRate(), output_sample_rate);
if(size>0)
memcpy(buffer,(unsigned char*)samples,size);
return size;
}
// returns bytes written, else -1 if error (0 is OK)
int AmAudio::put(unsigned long long system_ts, unsigned char* buffer,
int input_sample_rate, unsigned int size)
{
if(!size){
return 0;
}
if(max_rec_time > -1 && rec_time >= max_rec_time)
return -1;
memcpy((unsigned char*)samples,buffer,size);
size = resampleInput((unsigned char*)samples, size,
input_sample_rate, getSampleRate());
int s = encode(size);
if(s>0){
incRecordTime(bytes2samples(size));
unsigned int wr_ts = scaleSystemTS(system_ts);
//DBG("write(wr_ts = %10.u; s = %u)\n",wr_ts,s);
return write(wr_ts,(unsigned int)s);
}
else{
return s;
}
}
void AmAudio::stereo2mono(unsigned char* out_buf,unsigned char* in_buf,unsigned int& size)
{
short* in = (short*)in_buf;
short* end = (short*)(in_buf + size);
short* out = (short*)out_buf;
while(in != end){
*(out++) = (*in + *(in+1)) / 2;
in += 2;
}
size /= 2;
}
int AmAudio::decode(unsigned int size)
{
int s = size;
if(!fmt.get()){
DBG("no fmt !\n");
return s;
}
amci_codec_t* codec = fmt->getCodec();
long h_codec = fmt->getHCodec();
if(!codec){
ERROR("audio format set, but no codec has been loaded\n");
return -1;
}
if(codec->decode){
s = (*codec->decode)(samples.back_buffer(),samples,s,
fmt->channels,getSampleRate(),h_codec);
if(s<0) return s;
samples.swap();
}
return s;
}
int AmAudio::encode(unsigned int size)
{
int s = size;
amci_codec_t* codec = fmt->getCodec();
long h_codec = fmt->getHCodec();
assert(codec);
if(codec->encode){
s = (*codec->encode)(samples.back_buffer(),samples,(unsigned int) size,
fmt->channels,getSampleRate(),h_codec);
if(s<0) return s;
samples.swap();
}
return s;
}
unsigned int AmAudio::downMix(unsigned int size)
{
unsigned int s = size;
if(fmt->channels == 2){
stereo2mono(samples.back_buffer(),(unsigned char*)samples,s);
samples.swap();
}
return s;
}
unsigned int AmAudio::resampleInput(unsigned char* buffer, unsigned int s, int input_sample_rate, int output_sample_rate)
{
if ((input_sample_rate == output_sample_rate) && !input_resampling_state.get()) {
return s;
}
if (!input_resampling_state.get()) {
#ifdef USE_INTERNAL_RESAMPLER
if (AmConfig::ResamplingImplementationType == AmAudio::INTERNAL_RESAMPLER) {
DBG("using internal resampler for input");
input_resampling_state.reset(new AmInternalResamplerState());
} else
#endif
#ifdef USE_LIBSAMPLERATE
if (AmConfig::ResamplingImplementationType == AmAudio::LIBSAMPLERATE) {
input_resampling_state.reset(new AmLibSamplerateResamplingState());
} else
#endif
{
return s;
}
}
return resample(*input_resampling_state, buffer, s, input_sample_rate, output_sample_rate);
}
unsigned int AmAudio::resampleOutput(unsigned char* buffer, unsigned int s, int input_sample_rate, int output_sample_rate)
{
if ((input_sample_rate == output_sample_rate)
&& !output_resampling_state.get()) {
return s;
}
if (!output_resampling_state.get()) {
#ifdef USE_INTERNAL_RESAMPLER
if (AmConfig::ResamplingImplementationType == AmAudio::INTERNAL_RESAMPLER) {
DBG("using internal resampler for output");
output_resampling_state.reset(new AmInternalResamplerState());
} else
#endif
#ifdef USE_LIBSAMPLERATE
if (AmConfig::ResamplingImplementationType == AmAudio::LIBSAMPLERATE) {
output_resampling_state.reset(new AmLibSamplerateResamplingState());
} else
#endif
{
return s;
}
}
return resample(*output_resampling_state, buffer, s, input_sample_rate, output_sample_rate);
}
unsigned int AmAudio::resample(AmResamplingState& rstate, unsigned char* buffer, unsigned int s, int input_sample_rate, int output_sample_rate)
{
if (!input_sample_rate)
return 0;
return rstate.resample((unsigned char*) buffer, s, ((double) output_sample_rate) / ((double) input_sample_rate));
}
int AmAudio::getSampleRate()
{
if (!fmt.get())
return 0;
return fmt->getRate();
}
unsigned int AmAudio::scaleSystemTS(unsigned long long system_ts)
{
// pre-division by 100 is important
// so that the first multiplication
// does not overflow the 64bit int
unsigned long long user_ts =
system_ts * ((unsigned long long)getSampleRate() / 100)
/ (WALLCLOCK_RATE / 100);
return (unsigned int)user_ts;
}
unsigned int AmAudio::calcBytesToRead(unsigned int nb_samples) const
{
return fmt->calcBytesToRead(nb_samples);
}
unsigned int AmAudio::bytes2samples(unsigned int bytes) const
{
return fmt->bytes2samples(bytes);
}
void AmAudio::setRecordTime(unsigned int ms)
{
max_rec_time = (ms * (getSampleRate() / 100)) / 10;
}
int AmAudio::incRecordTime(unsigned int samples)
{
return rec_time += samples;
}
DblBuffer::DblBuffer()
: active_buf(0)
{
memset(samples, 0, AUDIO_BUFFER_SIZE * 2);
}
DblBuffer::operator unsigned char*()
{
return samples + (active_buf ? AUDIO_BUFFER_SIZE : 0);
}
unsigned char* DblBuffer::back_buffer()
{
return samples + (active_buf ? 0 : AUDIO_BUFFER_SIZE);
}
void DblBuffer::swap()
{
active_buf = !active_buf;
}