You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtpengine/daemon/aux.h

631 lines
18 KiB

#ifndef __AUX_H__
#define __AUX_H__
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <fcntl.h>
#include <glib.h>
#include <pcre.h>
#include <stdarg.h>
#include <arpa/inet.h>
#include <pthread.h>
#include <sys/resource.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "compat.h"
#include <openssl/rand.h>
#if !(GLIB_CHECK_VERSION(2,30,0))
#define g_atomic_int_and(atomic, val) \
(G_GNUC_EXTENSION ({ \
G_STATIC_ASSERT (sizeof *(atomic) == sizeof (gint)); \
(void) (0 ? *(atomic) ^ (val) : 0); \
(guint) __sync_fetch_and_and ((atomic), (val)); \
}))
#define g_atomic_int_or(atomic, val) \
(G_GNUC_EXTENSION ({ \
G_STATIC_ASSERT (sizeof *(atomic) == sizeof (gint)); \
(void) (0 ? *(atomic) ^ (val) : 0); \
(guint) __sync_fetch_and_or ((atomic), (val)); \
}))
#define g_atomic_pointer_add(atomic, val) \
(G_GNUC_EXTENSION ({ \
G_STATIC_ASSERT (sizeof *(atomic) == sizeof (gpointer)); \
(void) (0 ? (gpointer) *(atomic) : 0); \
(void) (0 ? (val) ^ (val) : 0); \
(gssize) __sync_fetch_and_add ((atomic), (val)); \
}))
#endif
#if 0 && defined(__DEBUG)
#define __THREAD_DEBUG 1
#endif
/*** HELPER MACROS ***/
#define ZERO(x) memset(&(x), 0, sizeof(x))
#define UINT64F "%" G_GUINT64_FORMAT
#define THREAD_BUF_SIZE 64
#define NUM_THREAD_BUFS 8
#define ALGORITHM_DEFAULT ""
#define ALGORITHM_ROUND_ROBIN_CALLS "round-robin-calls"
/*** GLOBALS ***/
extern __thread struct timeval g_now;
extern volatile int g_shutdown;
/*** PROTOTYPES ***/
typedef int (*parse_func)(char **, void **, void *);
int pcre_multi_match(pcre *, pcre_extra *, const char *, unsigned int, parse_func, void *, GQueue *);
INLINE void strmove(char **, char **);
INLINE void strdupfree(char **, const char *);
char *get_thread_buf(void);
unsigned int in6_addr_hash(const void *p);
int in6_addr_eq(const void *a, const void *b);
unsigned int uint32_hash(const void *p);
int uint32_eq(const void *a, const void *b);
int uint_cmp(const void *a, const void *b);
/*** GLIB HELPERS ***/
GList *g_list_link(GList *, GList *);
#if !GLIB_CHECK_VERSION(2,32,0)
INLINE int g_hash_table_contains(GHashTable *h, const void *k) {
return g_hash_table_lookup(h, k) ? 1 : 0;
}
#endif
/* GQUEUE */
INLINE void g_queue_move(GQueue *dst, GQueue *src) {
GList *l;
while ((l = g_queue_pop_head_link(src)))
g_queue_push_tail_link(dst, l);
}
INLINE void g_queue_truncate(GQueue *q, unsigned int len) {
while (q->length > len)
g_queue_pop_tail(q);
}
INLINE void g_queue_clear_full(GQueue *q, GDestroyNotify free_func) {
void *p;
while ((p = g_queue_pop_head(q)))
free_func(p);
}
INLINE void g_queue_append(GQueue *dst, const GQueue *src) {
GList *l;
if (!src || !dst)
return;
for (l = src->head; l; l = l->next)
g_queue_push_tail(dst, l->data);
}
/* GTREE */
int g_tree_find_first_cmp(void *, void *, void *);
int g_tree_find_all_cmp(void *, void *, void *);
INLINE void *g_tree_find_first(GTree *t, GEqualFunc f, void *data) {
void *p[3];
p[0] = data;
p[1] = f;
p[2] = NULL;
g_tree_foreach(t, g_tree_find_first_cmp, p);
return p[2];
}
INLINE void g_tree_find_all(GQueue *out, GTree *t, GEqualFunc f, void *data) {
void *p[3];
p[0] = data;
p[1] = f;
p[2] = out;
g_tree_foreach(t, g_tree_find_all_cmp, p);
}
INLINE void g_tree_get_values(GQueue *out, GTree *t) {
g_tree_find_all(out, t, NULL, NULL);
}
INLINE void g_tree_remove_all(GQueue *out, GTree *t) {
GList *l;
g_queue_init(out);
g_tree_find_all(out, t, NULL, NULL);
for (l = out->head; l; l = l->next)
g_tree_remove(t, l->data);
}
INLINE void g_tree_add_all(GTree *t, GQueue *q) {
GList *l;
for (l = q->head; l; l = l->next)
g_tree_insert(t, l->data, l->data);
g_queue_clear(q);
}
/*** STRING HELPERS ***/
INLINE void strmove(char **d, char **s) {
if (*d)
free(*d);
*d = *s;
*s = strdup("");
}
INLINE void strdupfree(char **d, const char *s) {
if (*d)
free(*d);
*d = strdup(s);
}
INLINE int strmemcmp(const void *mem, int len, const char *str) {
int l = strlen(str);
if (l < len)
return -1;
if (l > len)
return 1;
return memcmp(mem, str, len);
}
INLINE void random_string(unsigned char *buf, int len) {
RAND_bytes(buf, len);
}
INLINE const char *__get_enum_array_text(const char * const *array, unsigned int idx,
unsigned int len, const char *deflt)
{
const char *ret;
if (idx >= len)
return deflt;
ret = array[idx];
return ret ? : deflt;
}
#define get_enum_array_text(array, idx, deflt) \
__get_enum_array_text(array, idx, G_N_ELEMENTS(array), deflt)
/*** GENERIC HELPERS ***/
INLINE char chrtoupper(char x) {
return x & 0xdf;
}
INLINE void swap_ptrs(void *a, void *b) {
void *t, **aa, **bb;
aa = a;
bb = b;
t = *aa;
*aa = *bb;
*bb = t;
}
INLINE int rlim(int res, rlim_t val) {
struct rlimit rlim;
ZERO(rlim);
rlim.rlim_cur = rlim.rlim_max = val;
return setrlimit(res, &rlim);
}
/*** INET ADDRESS HELPERS ***/
#define IPF "%u.%u.%u.%u"
#define IPP(x) ((unsigned char *) (&(x)))[0], ((unsigned char *) (&(x)))[1], ((unsigned char *) (&(x)))[2], ((unsigned char *) (&(x)))[3]
#define IP6F "%x:%x:%x:%x:%x:%x:%x:%x"
#define IP6P(x) ntohs(((u_int16_t *) (x))[0]), \
ntohs(((u_int16_t *) (x))[1]), \
ntohs(((u_int16_t *) (x))[2]), \
ntohs(((u_int16_t *) (x))[3]), \
ntohs(((u_int16_t *) (x))[4]), \
ntohs(((u_int16_t *) (x))[5]), \
ntohs(((u_int16_t *) (x))[6]), \
ntohs(((u_int16_t *) (x))[7])
#define D6F "["IP6F"]:%u"
#define D6P(x) IP6P((x).sin6_addr.s6_addr), ntohs((x).sin6_port)
#define DF IPF ":%u"
#define DP(x) IPP((x).sin_addr.s_addr), ntohs((x).sin_port)
/*** MUTEX ABSTRACTION ***/
typedef pthread_mutex_t mutex_t;
typedef pthread_rwlock_t rwlock_t;
typedef pthread_cond_t cond_t;
#define mutex_init(m) __debug_mutex_init(m, __FILE__, __LINE__)
#define mutex_destroy(m) __debug_mutex_destroy(m, __FILE__, __LINE__)
#define mutex_lock(m) __debug_mutex_lock(m, __FILE__, __LINE__)
#define mutex_trylock(m) __debug_mutex_trylock(m, __FILE__, __LINE__)
#define mutex_unlock(m) __debug_mutex_unlock(m, __FILE__, __LINE__)
#define MUTEX_STATIC_INIT PTHREAD_MUTEX_INITIALIZER
#define rwlock_init(l) __debug_rwlock_init(l, __FILE__, __LINE__)
#define rwlock_destroy(l) __debug_rwlock_destroy(l, __FILE__, __LINE__)
#define rwlock_lock_r(l) __debug_rwlock_lock_r(l, __FILE__, __LINE__)
#define rwlock_unlock_r(l) __debug_rwlock_unlock_r(l, __FILE__, __LINE__)
#define rwlock_lock_w(l) __debug_rwlock_lock_w(l, __FILE__, __LINE__)
#define rwlock_unlock_w(l) __debug_rwlock_unlock_w(l, __FILE__, __LINE__)
#define cond_init(c) __debug_cond_init(c, __FILE__, __LINE__)
#define cond_wait(c,m) __debug_cond_wait(c,m, __FILE__, __LINE__)
#define cond_timedwait(c,m,t) __debug_cond_timedwait(c,m,t, __FILE__, __LINE__)
#define cond_signal(c) __debug_cond_signal(c, __FILE__, __LINE__)
#define cond_broadcast(c) __debug_cond_broadcast(c, __FILE__, __LINE__)
#define COND_STATIC_INIT PTHREAD_COND_INITIALIZER
INLINE int __cond_timedwait_tv(cond_t *c, mutex_t *m, const struct timeval *tv) {
struct timespec ts;
ts.tv_sec = tv->tv_sec;
ts.tv_nsec = tv->tv_usec * 1000;
return pthread_cond_timedwait(c, m, &ts);
}
#ifndef __THREAD_DEBUG
#define __debug_mutex_init(m, F, L) pthread_mutex_init(m, NULL)
#define __debug_mutex_destroy(m, F, L) pthread_mutex_destroy(m)
#define __debug_mutex_lock(m, F, L) pthread_mutex_lock(m)
#define __debug_mutex_trylock(m, F, L) pthread_mutex_trylock(m)
#define __debug_mutex_unlock(m, F, L) pthread_mutex_unlock(m)
#define __debug_rwlock_init(l, F, L) pthread_rwlock_init(l, NULL)
#define __debug_rwlock_destroy(l, F, L) pthread_rwlock_destroy(l)
#define __debug_rwlock_lock_r(l, F, L) pthread_rwlock_rdlock(l)
#define __debug_rwlock_unlock_r(l, F, L) pthread_rwlock_unlock(l)
#define __debug_rwlock_lock_w(l, F, L) pthread_rwlock_wrlock(l)
#define __debug_rwlock_unlock_w(l, F, L) pthread_rwlock_unlock(l)
#define __debug_cond_init(c, F, L) pthread_cond_init(c, NULL)
#define __debug_cond_wait(c, m, F, L) pthread_cond_wait(c,m)
#define __debug_cond_timedwait(c, m, t, F, L) __cond_timedwait_tv(c,m,t)
#define __debug_cond_signal(c, F, L) pthread_cond_signal(c)
#define __debug_cond_broadcast(c, F, L) pthread_cond_broadcast(c)
#else
#include "log.h"
INLINE int __debug_mutex_init(mutex_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "mutex_init(%p) at %s:%u", m, file, line);
return pthread_mutex_init(m, NULL);
}
INLINE int __debug_mutex_destroy(mutex_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "mutex_destroy(%p) at %s:%u", m, file, line);
return pthread_mutex_destroy(m);
}
INLINE int __debug_mutex_lock(mutex_t *m, const char *file, unsigned int line) {
int ret;
mylog(LOG_DEBUG, "mutex_lock(%p) at %s:%u ...", m, file, line);
ret = pthread_mutex_lock(m);
mylog(LOG_DEBUG, "mutex_lock(%p) at %s:%u returning %i", m, file, line, ret);
return ret;
}
INLINE int __debug_mutex_trylock(mutex_t *m, const char *file, unsigned int line) {
int ret;
mylog(LOG_DEBUG, "mutex_trylock(%p) at %s:%u ...", m, file, line);
ret = pthread_mutex_trylock(m);
mylog(LOG_DEBUG, "mutex_trylock(%p) at %s:%u returning %i", m, file, line, ret);
return ret;
}
INLINE int __debug_mutex_unlock(mutex_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "mutex_unlock(%p) at %s:%u", m, file, line);
return pthread_mutex_unlock(m);
}
INLINE int __debug_rwlock_init(rwlock_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "rwlock_init(%p) at %s:%u", m, file, line);
return pthread_rwlock_init(m, NULL);
}
INLINE int __debug_rwlock_destroy(rwlock_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "rwlock_destroy(%p) at %s:%u", m, file, line);
return pthread_rwlock_destroy(m);
}
INLINE int __debug_rwlock_lock_r(rwlock_t *m, const char *file, unsigned int line) {
int ret;
mylog(LOG_DEBUG, "rwlock_lock_r(%p) at %s:%u ...", m, file, line);
ret = pthread_rwlock_rdlock(m);
mylog(LOG_DEBUG, "rwlock_lock_r(%p) at %s:%u returning %i", m, file, line, ret);
return ret;
}
INLINE int __debug_rwlock_lock_w(rwlock_t *m, const char *file, unsigned int line) {
int ret;
mylog(LOG_DEBUG, "rwlock_lock_w(%p) at %s:%u ...", m, file, line);
ret = pthread_rwlock_wrlock(m);
mylog(LOG_DEBUG, "rwlock_lock_w(%p) at %s:%u returning %i", m, file, line, ret);
return ret;
}
INLINE int __debug_rwlock_unlock_r(rwlock_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "rwlock_unlock_r(%p) at %s:%u", m, file, line);
return pthread_rwlock_unlock(m);
}
INLINE int __debug_rwlock_unlock_w(rwlock_t *m, const char *file, unsigned int line) {
mylog(LOG_DEBUG, "rwlock_unlock_w(%p) at %s:%u", m, file, line);
return pthread_rwlock_unlock(m);
}
#define __debug_cond_init(c, F, L) pthread_cond_init(c, NULL)
#define __debug_cond_wait(c, m, F, L) pthread_cond_wait(c,m)
#define __debug_cond_timedwait(c, m, t, F, L) __cond_timedwait_tv(c,m,t)
#define __debug_cond_signal(c, F, L) pthread_cond_signal(c)
#define __debug_cond_broadcast(c, F, L) pthread_cond_broadcast(c)
#endif
/*** THREAD HELPERS ***/
void threads_join_all(int);
void thread_create_detach(void (*)(void *), void *);
/*** ATOMIC BITFIELD OPERATIONS ***/
/* checks if at least one of the flags is set */
INLINE int bf_isset(const volatile unsigned int *u, unsigned int f) {
if ((g_atomic_int_get(u) & f))
return -1;
return 0;
}
/* checks if all of the flags are set */
INLINE int bf_areset(const volatile unsigned int *u, unsigned int f) {
if ((g_atomic_int_get(u) & f) == f)
return -1;
return 0;
}
/* returns true if at least one of the flags was set already */
INLINE int bf_set(volatile unsigned int *u, unsigned int f) {
return (g_atomic_int_or(u, f) & f) ? -1 : 0;
}
/* returns true if at least one of the flags was set */
INLINE int bf_clear(volatile unsigned int *u, unsigned int f) {
return (g_atomic_int_and(u, ~f) & f) ? -1 : 0;
}
INLINE void bf_set_clear(volatile unsigned int *u, unsigned int f, int cond) {
if (cond)
bf_set(u, f);
else
bf_clear(u, f);
}
/* works only for single flags */
INLINE void bf_copy(volatile unsigned int *u, unsigned int f,
const volatile unsigned int *s, unsigned int g)
{
bf_set_clear(u, f, bf_isset(s, g));
}
/* works for multiple flags */
INLINE void bf_copy_same(volatile unsigned int *u, const volatile unsigned int *s, unsigned int g) {
unsigned int old, set, clear;
old = g_atomic_int_get(s);
set = old & g;
clear = ~old & g;
bf_set(u, set);
bf_clear(u, clear);
}
/*** BIT ARRAY FUNCTIONS ***/
#define BIT_ARRAY_DECLARE(name, size) \
volatile unsigned int name[((size) + sizeof(int) * 8 - 1) / (sizeof(int) * 8)]
INLINE int bit_array_isset(const volatile unsigned int *name, unsigned int bit) {
return bf_isset(&name[bit / (sizeof(int) * 8)], 1U << (bit % (sizeof(int) * 8)));
}
INLINE int bit_array_set(volatile unsigned int *name, unsigned int bit) {
return bf_set(&name[bit / (sizeof(int) * 8)], 1U << (bit % (sizeof(int) * 8)));
}
INLINE int bit_array_clear(volatile unsigned int *name, unsigned int bit) {
return bf_clear(&name[bit / (sizeof(int) * 8)], 1U << (bit % (sizeof(int) * 8)));
}
/*** ATOMIC64 ***/
#if GLIB_SIZEOF_VOID_P >= 8
typedef struct {
volatile void *p;
} atomic64;
INLINE u_int64_t atomic64_get(const atomic64 *u) {
return (u_int64_t) g_atomic_pointer_get(&u->p);
}
INLINE u_int64_t atomic64_get_na(const atomic64 *u) {
return (u_int64_t) u->p;
}
INLINE void atomic64_set(atomic64 *u, u_int64_t a) {
g_atomic_pointer_set(&u->p, (void *) a);
}
INLINE void atomic64_set_na(atomic64 *u, u_int64_t a) {
u->p = (void *) a;
}
INLINE void atomic64_add(atomic64 *u, u_int64_t a) {
g_atomic_pointer_add(&u->p, a);
}
INLINE void atomic64_add_na(atomic64 *u, u_int64_t a) {
u->p = (void *) (((u_int64_t) u->p) + a);
}
INLINE u_int64_t atomic64_get_set(atomic64 *u, u_int64_t a) {
u_int64_t old;
do {
old = atomic64_get(u);
if (g_atomic_pointer_compare_and_exchange(&u->p, (void *) old, (void *) a))
return old;
} while (1);
}
#else
/* Simulate atomic u64 with a global mutex on non-64-bit platforms.
* Bad performance possible, thus not recommended. */
typedef struct {
u_int64_t u;
} atomic64;
#define NEED_ATOMIC64_MUTEX
extern mutex_t __atomic64_mutex;
INLINE u_int64_t atomic64_get(const atomic64 *u) {
u_int64_t ret;
mutex_lock(&__atomic64_mutex);
ret = u->u;
mutex_unlock(&__atomic64_mutex);
return ret;
}
INLINE u_int64_t atomic64_get_na(const atomic64 *u) {
return u->u;
}
INLINE void atomic64_set(atomic64 *u, u_int64_t a) {
mutex_lock(&__atomic64_mutex);
u->u = a;
mutex_unlock(&__atomic64_mutex);
}
INLINE void atomic64_set_na(atomic64 *u, u_int64_t a) {
u->u = a;
}
INLINE void atomic64_add(atomic64 *u, u_int64_t a) {
mutex_lock(&__atomic64_mutex);
u->u += a;
mutex_unlock(&__atomic64_mutex);
}
INLINE void atomic64_add_na(atomic64 *u, u_int64_t a) {
u->u += a;
}
INLINE u_int64_t atomic64_get_set(atomic64 *u, u_int64_t a) {
u_int64_t old;
mutex_lock(&__atomic64_mutex);
old = u->u;
u->u = a;
mutex_unlock(&__atomic64_mutex);
return old;
}
#endif
INLINE void atomic64_inc(atomic64 *u) {
atomic64_add(u, 1);
}
INLINE void atomic64_dec(atomic64 *u) {
atomic64_add(u, -1);
}
INLINE void atomic64_local_copy_zero(atomic64 *dst, atomic64 *src) {
atomic64_set_na(dst, atomic64_get_set(src, 0));
}
#define atomic64_local_copy_zero_struct(d, s, member) \
atomic64_local_copy_zero(&((d)->member), &((s)->member))
/*** TIMEVAL FUNCTIONS ***/
INLINE long long timeval_us(const struct timeval *t) {
return (long long) ((long long) t->tv_sec * 1000000LL) + t->tv_usec;
}
INLINE void timeval_from_us(struct timeval *t, long long ms) {
t->tv_sec = ms/1000000LL;
t->tv_usec = ms%1000000LL;
}
INLINE long long timeval_diff(const struct timeval *a, const struct timeval *b) {
return timeval_us(a) - timeval_us(b);
}
INLINE void timeval_subtract(struct timeval *result, const struct timeval *a, const struct timeval *b) {
timeval_from_us(result, timeval_diff(a, b));
}
INLINE void timeval_multiply(struct timeval *result, const struct timeval *a, const long multiplier) {
timeval_from_us(result, timeval_us(a) * multiplier);
}
INLINE void timeval_divide(struct timeval *result, const struct timeval *a, const long divisor) {
if (divisor == 0) {
result->tv_sec = 0;
result->tv_usec = 0;
return ;
}
timeval_from_us(result, timeval_us(a) / divisor);
}
INLINE void timeval_add(struct timeval *result, const struct timeval *a, const struct timeval *b) {
timeval_from_us(result, timeval_us(a) + timeval_us(b));
}
INLINE void timeval_add_usec(struct timeval *tv, long usec) {
timeval_from_us(tv, timeval_us(tv) + usec);
}
INLINE int timeval_cmp(const struct timeval *a, const struct timeval *b) {
long long diff;
diff = timeval_diff(a, b);
if (diff < 0)
return -1;
if (diff > 0)
return 1;
return 0;
}
INLINE void timeval_lowest(struct timeval *l, const struct timeval *n) {
if (!n->tv_sec)
return;
if (!l->tv_sec || timeval_cmp(l, n) == 1)
*l = *n;
}
/*** ALLOC WITH UNIQUE ID HELPERS ***/
#define uid_slice_alloc(ptr, q) __uid_slice_alloc(sizeof(*(ptr)), q, \
G_STRUCT_OFFSET(__typeof__(*(ptr)), unique_id))
#define uid_slice_alloc0(ptr, q) __uid_slice_alloc0(sizeof(*(ptr)), q, \
G_STRUCT_OFFSET(__typeof__(*(ptr)), unique_id))
INLINE void __uid_slice_alloc_fill(void *ptr, GQueue *q, unsigned int offset) {
unsigned int *id;
id = G_STRUCT_MEMBER_P(ptr, offset);
*id = g_queue_get_length(q);
g_queue_push_tail(q, ptr);
}
INLINE void *__uid_slice_alloc(unsigned int size, GQueue *q, unsigned int offset) {
void *ret;
ret = g_slice_alloc(size);
__uid_slice_alloc_fill(ret, q, offset);
return ret;
}
INLINE void *__uid_slice_alloc0(unsigned int size, GQueue *q, unsigned int offset) {
void *ret;
ret = g_slice_alloc0(size);
__uid_slice_alloc_fill(ret, q, offset);
return ret;
}
#endif