You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtpengine/daemon/media_socket.c

3390 lines
101 KiB

#include "media_socket.h"
#include <stdio.h>
#include <string.h>
#include <glib.h>
#include <errno.h>
#include <netinet/in.h>
#include "str.h"
#include "ice.h"
#include "socket.h"
#include "redis.h"
#include "rtp.h"
#include "ice.h"
#include "stun.h"
#include "kernel.h"
#include "rtcp.h"
#include "sdp.h"
#include "helpers.h"
#include "log_funcs.h"
#include "poller.h"
#include "recording.h"
#include "rtplib.h"
#include "rtcplib.h"
#include "ssrc.h"
#include "iptables.h"
#include "main.h"
#include "codec.h"
#include "media_player.h"
#include "jitter_buffer.h"
#include "dtmf.h"
#include "mqtt.h"
#include "janus.h"
#include "bufferpool.h"
#include "xt_RTPENGINE.h"
#ifndef PORT_RANDOM_MIN
#define PORT_RANDOM_MIN 6
#define PORT_RANDOM_MAX 20
#endif
#ifndef MAX_RECV_LOOP_STRIKES
#define MAX_RECV_LOOP_STRIKES 5
#endif
TYPED_GQUEUE(logical_intf, struct logical_intf)
struct intf_key {
str name;
sockfamily_t *preferred_family;
};
struct intf_rr {
struct intf_key hash_key;
mutex_t lock;
logical_intf_q logical_intfs;
struct logical_intf *singular; // set iff only one is present in the list - no lock needed
};
struct packet_handler_ctx {
// inputs:
str s; // raw input packet
bool kernel_handled; // parse and read contents but do not forward
sink_handler_q *sinks; // where to send output packets to (forward destination)
rewrite_func decrypt_func, encrypt_func; // handlers for decrypt/encrypt
rtcp_filter_func *rtcp_filter;
struct packet_stream *in_srtp, *out_srtp; // SRTP contexts for decrypt/encrypt (relevant for muxed RTCP)
int payload_type; // -1 if unknown or not RTP
bool rtcp; // true if this is an RTCP packet
GQueue rtcp_list;
// verdicts:
bool update; // true if Redis info needs to be updated
const char *unkernelize; // non-null if stream ought to be removed from kernel
bool unconfirm; // forget learned peer address
bool unkernelize_subscriptions; // if our peer address changed
bool kernelize; // true if stream can be kernelized
bool rtcp_discard; // do not forward RTCP
// output:
struct media_packet mp; // passed to handlers
};
struct late_port_release {
socket_t socket;
struct port_pool *pp;
ports_q pp_links;
};
struct interface_stats_interval {
struct interface_stats_block stats;
struct timeval last_run;
};
TYPED_GQUEUE(ports_release, struct late_port_release)
/* thread scope (local) queue for sockets to be released, only appending here */
static __thread ports_release_q ports_to_release = TYPED_GQUEUE_INIT;
/* global queue for sockets to be released, releasing by `sockets_releaser()` is done using that */
static ports_release_q ports_to_release_glob = TYPED_GQUEUE_INIT;
static mutex_t ports_to_release_glob_lock = MUTEX_STATIC_INIT;
static const struct streamhandler *__determine_handler(struct packet_stream *in, struct sink_handler *);
static int __k_null(struct rtpengine_srtp *s, struct packet_stream *);
static int __k_srtp_encrypt(struct rtpengine_srtp *s, struct packet_stream *);
static int __k_srtp_decrypt(struct rtpengine_srtp *s, struct packet_stream *);
static int call_avp2savp_rtp(str *s, struct packet_stream *, struct ssrc_ctx *);
static int call_savp2avp_rtp(str *s, struct packet_stream *, struct ssrc_ctx *);
static int call_avp2savp_rtcp(str *s, struct packet_stream *, struct ssrc_ctx *);
static int call_savp2avp_rtcp(str *s, struct packet_stream *, struct ssrc_ctx *);
static struct logical_intf *__get_logical_interface(const str *name, sockfamily_t *fam);
/* ********** */
const struct transport_protocol transport_protocols[] = {
[PROTO_RTP_AVP] = {
.index = PROTO_RTP_AVP,
.name = "RTP/AVP",
.avpf_proto = PROTO_RTP_AVPF,
.osrtp_proto = PROTO_RTP_SAVP_OSRTP,
.rtp = 1,
.srtp = 0,
.avpf = 0,
.tcp = 0,
},
[PROTO_RTP_SAVP] = {
.index = PROTO_RTP_SAVP,
.name = "RTP/SAVP",
.avpf_proto = PROTO_RTP_SAVPF,
.rtp = 1,
.srtp = 1,
.rtp_proto = PROTO_RTP_AVP,
.avpf = 0,
.tcp = 0,
},
[PROTO_RTP_AVPF] = {
.index = PROTO_RTP_AVPF,
.name = "RTP/AVPF",
.osrtp_proto = PROTO_RTP_SAVPF_OSRTP,
.rtp = 1,
.srtp = 0,
.avpf = 1,
.tcp = 0,
},
[PROTO_RTP_SAVPF] = {
.index = PROTO_RTP_SAVPF,
.name = "RTP/SAVPF",
.rtp = 1,
.srtp = 1,
.rtp_proto = PROTO_RTP_AVPF,
.avpf = 1,
.tcp = 0,
},
[PROTO_UDP_TLS_RTP_SAVP] = {
.index = PROTO_UDP_TLS_RTP_SAVP,
.name = "UDP/TLS/RTP/SAVP",
.avpf_proto = PROTO_UDP_TLS_RTP_SAVPF,
.rtp = 1,
.srtp = 1,
.rtp_proto = PROTO_RTP_AVP,
.avpf = 0,
.tcp = 0,
},
[PROTO_UDP_TLS_RTP_SAVPF] = {
.index = PROTO_UDP_TLS_RTP_SAVPF,
.name = "UDP/TLS/RTP/SAVPF",
.rtp = 1,
.srtp = 1,
.rtp_proto = PROTO_RTP_AVPF,
.avpf = 1,
.tcp = 0,
},
[PROTO_UDPTL] = {
.index = PROTO_UDPTL,
.name = "udptl",
.rtp = 0,
.srtp = 0,
.avpf = 0,
.tcp = 0,
},
[PROTO_RTP_SAVP_OSRTP] = {
.index = PROTO_RTP_SAVP_OSRTP,
.name = "RTP/AVP",
.avpf_proto = PROTO_RTP_SAVPF_OSRTP,
.rtp = 1,
.srtp = 1,
.rtp_proto = PROTO_RTP_AVP,
.osrtp = 1,
.avpf = 0,
.tcp = 0,
},
[PROTO_RTP_SAVPF_OSRTP] = {
.index = PROTO_RTP_SAVPF_OSRTP,
.name = "RTP/AVPF",
.rtp = 1,
.srtp = 1,
.rtp_proto = PROTO_RTP_AVPF,
.osrtp = 1,
.avpf = 1,
.tcp = 0,
},
[PROTO_UNKNOWN] = {
.index = PROTO_UNKNOWN,
.name = "unknown (legacy)",
.rtp = 0,
.srtp = 0,
.avpf = 0,
.tcp = 0,
},
};
const int num_transport_protocols = G_N_ELEMENTS(transport_protocols);
/* ********** */
static const struct streamhandler_io __shio_noop = { // non-RTP protocols
.kernel = __k_null,
};
static const struct streamhandler_io __shio_noop_rtp = {
.kernel = __k_null,
};
static const struct streamhandler_io __shio_decrypt = {
.kernel = __k_srtp_decrypt,
.rtp_crypt = call_savp2avp_rtp,
.rtcp_crypt = call_savp2avp_rtcp,
};
static const struct streamhandler_io __shio_encrypt = {
.kernel = __k_srtp_encrypt,
.rtp_crypt = call_avp2savp_rtp,
.rtcp_crypt = call_avp2savp_rtcp,
};
static const struct streamhandler_io __shio_decrypt_rtcp_only = {
.kernel = __k_null,
.rtcp_crypt = call_savp2avp_rtcp,
};
static const struct streamhandler_io __shio_encrypt_rtcp_only = {
.kernel = __k_null,
.rtcp_crypt = call_avp2savp_rtcp,
};
static const struct streamhandler_io __shio_avpf_strip = {
.kernel = __k_null,
.rtcp_filter = rtcp_avpf2avp_filter,
};
static const struct streamhandler_io __shio_decrypt_avpf_strip = {
.kernel = __k_srtp_decrypt,
.rtp_crypt = call_savp2avp_rtp,
.rtcp_crypt = call_savp2avp_rtcp,
.rtcp_filter = rtcp_avpf2avp_filter,
};
/* ********** */
static const struct streamhandler __sh_noop = { // non-RTP protocols
.in = &__shio_noop,
.out = &__shio_noop,
};
static const struct streamhandler __sh_noop_rtp = {
.in = &__shio_noop_rtp,
.out = &__shio_noop,
};
static const struct streamhandler __sh_savp2avp = {
.in = &__shio_decrypt,
.out = &__shio_noop,
};
static const struct streamhandler __sh_avp2savp = {
.in = &__shio_noop_rtp,
.out = &__shio_encrypt,
};
static const struct streamhandler __sh_avpf2avp = {
.in = &__shio_avpf_strip,
.out = &__shio_noop,
};
static const struct streamhandler __sh_avpf2savp = {
.in = &__shio_avpf_strip,
.out = &__shio_encrypt,
};
static const struct streamhandler __sh_savpf2avp = {
.in = &__shio_decrypt_avpf_strip,
.out = &__shio_noop,
};
static const struct streamhandler __sh_savp2savp = {
.in = &__shio_decrypt,
.out = &__shio_encrypt,
};
static const struct streamhandler __sh_savp2savp_rtcp_only = {
.in = &__shio_decrypt_rtcp_only,
.out = &__shio_encrypt_rtcp_only,
};
static const struct streamhandler __sh_savpf2savp = {
.in = &__shio_decrypt_avpf_strip,
.out = &__shio_encrypt,
};
/* ********** */
static const struct streamhandler * const __sh_matrix_in_rtp_avp[__PROTO_LAST] = {
[PROTO_RTP_AVP] = &__sh_noop_rtp,
[PROTO_RTP_AVPF] = &__sh_noop_rtp,
[PROTO_RTP_SAVP] = &__sh_avp2savp,
[PROTO_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_avp2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_avp2savp,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_avp2savp,
};
static const struct streamhandler * const __sh_matrix_in_rtp_avpf[__PROTO_LAST] = {
[PROTO_RTP_AVP] = &__sh_avpf2avp,
[PROTO_RTP_AVPF] = &__sh_noop_rtp,
[PROTO_RTP_SAVP] = &__sh_avpf2savp,
[PROTO_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_avpf2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_avpf2savp,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_avp2savp,
};
static const struct streamhandler * const __sh_matrix_in_rtp_savp[__PROTO_LAST] = {
[PROTO_RTP_AVP] = &__sh_savp2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savp2savp_rtcp_only,
[PROTO_RTP_SAVPF] = &__sh_savp2savp_rtcp_only,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savp2savp_rtcp_only,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_savp2savp_rtcp_only,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_savp2savp_rtcp_only,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_savp2savp_rtcp_only,
};
static const struct streamhandler * const __sh_matrix_in_rtp_savpf[__PROTO_LAST] = {
[PROTO_RTP_AVP] = &__sh_savpf2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_RTP_SAVPF] = &__sh_savp2savp_rtcp_only,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_savp2savp_rtcp_only,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_savpf2savp,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_savp2savp_rtcp_only,
};
static const struct streamhandler * const __sh_matrix_in_rtp_savp_recrypt[__PROTO_LAST] = {
[PROTO_RTP_AVP] = &__sh_savp2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savp2savp,
[PROTO_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savp2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_savp2savp,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_savp2savp,
};
static const struct streamhandler * const __sh_matrix_in_rtp_savpf_recrypt[__PROTO_LAST] = {
[PROTO_RTP_AVP] = &__sh_savpf2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_savpf2savp,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_savp2savp,
};
static const struct streamhandler * const __sh_matrix_noop[__PROTO_LAST] = { // non-RTP protocols
[PROTO_RTP_AVP] = &__sh_noop,
[PROTO_RTP_AVPF] = &__sh_noop,
[PROTO_RTP_SAVP] = &__sh_noop,
[PROTO_RTP_SAVPF] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_noop,
[PROTO_UDPTL] = &__sh_noop,
[PROTO_RTP_SAVP_OSRTP] = &__sh_noop,
[PROTO_RTP_SAVPF_OSRTP] = &__sh_noop,
[PROTO_UNKNOWN] = &__sh_noop,
};
/* ********** */
static const struct streamhandler * const * const __sh_matrix[__PROTO_LAST] = {
[PROTO_RTP_AVP] = __sh_matrix_in_rtp_avp,
[PROTO_RTP_AVPF] = __sh_matrix_in_rtp_avpf,
[PROTO_RTP_SAVP] = __sh_matrix_in_rtp_savp,
[PROTO_RTP_SAVPF] = __sh_matrix_in_rtp_savpf,
[PROTO_UDP_TLS_RTP_SAVP] = __sh_matrix_in_rtp_savp,
[PROTO_UDP_TLS_RTP_SAVPF] = __sh_matrix_in_rtp_savpf,
[PROTO_UDPTL] = __sh_matrix_noop,
[PROTO_RTP_SAVP_OSRTP] = __sh_matrix_in_rtp_savp,
[PROTO_RTP_SAVPF_OSRTP] = __sh_matrix_in_rtp_savpf,
[PROTO_UNKNOWN] = __sh_matrix_noop,
};
/* special case for DTLS as we can't pass through SRTP<>SRTP */
static const struct streamhandler * const * const __sh_matrix_recrypt[__PROTO_LAST] = {
[PROTO_RTP_AVP] = __sh_matrix_in_rtp_avp,
[PROTO_RTP_AVPF] = __sh_matrix_in_rtp_avpf,
[PROTO_RTP_SAVP] = __sh_matrix_in_rtp_savp_recrypt,
[PROTO_RTP_SAVPF] = __sh_matrix_in_rtp_savpf_recrypt,
[PROTO_UDP_TLS_RTP_SAVP] = __sh_matrix_in_rtp_savp_recrypt,
[PROTO_UDP_TLS_RTP_SAVPF] = __sh_matrix_in_rtp_savpf_recrypt,
[PROTO_UDPTL] = __sh_matrix_noop,
[PROTO_RTP_SAVP_OSRTP] = __sh_matrix_in_rtp_savp_recrypt,
[PROTO_RTP_SAVPF_OSRTP] = __sh_matrix_in_rtp_savpf_recrypt,
[PROTO_UNKNOWN] = __sh_matrix_noop,
};
/* ********** */
static const struct rtpengine_srtp __res_null = {
.cipher = REC_NULL,
.hmac = REH_NULL,
};
static logical_intf_q *__interface_list_for_family(sockfamily_t *fam);
static unsigned int __name_family_hash(const struct intf_key *p);
static int __name_family_eq(const struct intf_key *a, const struct intf_key *b);
static unsigned int __addr_type_hash(const struct intf_address *p);
static int __addr_type_eq(const struct intf_address *a, const struct intf_address *b);
TYPED_GQUEUE(intf_spec, struct intf_spec)
TYPED_GHASHTABLE(intf_lookup, struct intf_key, struct logical_intf, __name_family_hash, __name_family_eq,
g_free, NULL)
TYPED_GHASHTABLE(intf_rr_lookup, struct intf_key, struct intf_rr, __name_family_hash, __name_family_eq,
NULL, NULL)
TYPED_GHASHTABLE(intf_spec_ht, struct intf_address, intf_spec_q, __addr_type_hash, __addr_type_eq,
NULL, NULL)
TYPED_GHASHTABLE(local_intf_ht, struct intf_address, local_intf_list, __addr_type_hash, __addr_type_eq,
NULL, NULL)
static intf_lookup __logical_intf_name_family_hash;
static intf_rr_lookup __logical_intf_name_family_rr_hash;
static intf_spec_ht __intf_spec_addr_type_hash;
static local_intf_ht __local_intf_addr_type_hash;
static logical_intf_q __preferred_lists_for_family[__SF_LAST];
local_intf_q all_local_interfaces = TYPED_GQUEUE_INIT;
TYPED_GHASHTABLE(local_sockets_ht, endpoint_t, stream_fd, endpoint_hash, endpoint_eq, NULL, stream_fd_put)
static rwlock_t local_media_socket_endpoints_lock = RWLOCK_STATIC_INIT;
static local_sockets_ht local_media_socket_endpoints;
__thread struct bufferpool *media_bufferpool;
/* checks for free no_ports on a local interface */
static int has_free_ports_loc(struct local_intf *loc, unsigned int num_ports) {
if (loc == NULL) {
ilog(LOG_ERR, "has_free_ports_loc - NULL local interface");
return 0;
}
if (num_ports > loc->spec->port_pool.free_ports_q.length) {
ilog(LOG_ERR, "Didn't find %d ports available for " STR_FORMAT "/%s",
num_ports, STR_FMT(&loc->logical->name),
sockaddr_print_buf(&loc->spec->local_address.addr));
return 0;
}
__C_DBG("Found %d ports available for " STR_FORMAT "/%s from total of %u free ports",
num_ports, STR_FMT(&loc->logical->name),
sockaddr_print_buf(&loc->spec->local_address.addr),
loc->spec->port_pool.free_ports_q.length);
return 1;
}
#if 0
/* checks for free num_ports on at least one local interface of a logical interface */
static int has_free_ports_log_any(struct logical_intf *log, unsigned int num_ports) {
if (log == NULL) {
ilog(LOG_ERR, "has_free_ports_log_any - NULL logical interface");
return 0;
}
struct local_intf *loc;
GList *l;
for (l = log->list.head; l; l = l->next) {
loc = l->data;
if (has_free_ports_loc(loc, num_ports)) {
return 1;
}
}
return 0;
}
#endif
/* checks for free num_ports on all local interfaces of a logical interface */
static int has_free_ports_log_all(struct logical_intf *log, unsigned int num_ports) {
if (log == NULL) {
ilog(LOG_ERR, "has_free_ports_log_all - NULL logical interface");
return 0;
}
struct local_intf *loc;
for (__auto_type l = log->list.head; l; l = l->next) {
loc = l->data;
if (!has_free_ports_loc(loc, num_ports)) {
return 0;
}
}
return 1;
}
/* run round-robin-calls algorithm */
static struct logical_intf* run_round_robin_calls(struct intf_rr *rr, unsigned int num_ports) {
struct logical_intf *log = NULL;
mutex_lock(&rr->lock);
unsigned int max_tries = rr->logical_intfs.length;
unsigned int num_tries = 0;
while (num_tries++ < max_tries) {
__auto_type link = t_queue_pop_head_link(&rr->logical_intfs);
log = link->data;
t_queue_push_tail_link(&rr->logical_intfs, link);
mutex_unlock(&rr->lock);
__C_DBG("Trying %d ports on logical interface " STR_FORMAT, num_ports, STR_FMT(&log->name));
if (has_free_ports_log_all(log, num_ports))
goto done;
log = NULL;
mutex_lock(&rr->lock);
}
mutex_unlock(&rr->lock);
done:
if (!log) {
ilog(LOG_ERR, "No logical interface with free ports found; fallback to default behaviour");
return NULL;
}
__C_DBG("Round Robin Calls algorithm found logical " STR_FORMAT, STR_FMT(&log->name));
return log;
}
// 'fam' may only be NULL if 'name' is also NULL
struct logical_intf *get_logical_interface(const str *name, sockfamily_t *fam, int num_ports) {
struct logical_intf *log = NULL;
int rr_use_default_intf = 0;
__C_DBG("Get logical interface for %d ports", num_ports);
if (G_UNLIKELY(!name || !name->s)) {
// trivial case: no interface given. just pick one suitable for the address family.
// always used for legacy TCP and UDP protocols.
logical_intf_q *q = NULL;
if (fam)
q = __interface_list_for_family(fam);
if (!q) {
for (int i = 0; i < __SF_LAST; i++) {
q = &__preferred_lists_for_family[i];
if (q->length)
goto got_some;
}
abort();
got_some:
;
}
if (!q->head)
return NULL;
log = q->head->data;
// if interface is in the form foo:bar then use round-robin
if (!fam || log->name.len == log->name_base.len)
return log;
else
rr_use_default_intf = 1;
}
// check if round-robin is desired
struct intf_key key;
if (rr_use_default_intf)
key.name = log->name_base;
else
key.name = *name;
key.preferred_family = fam;
struct intf_rr *rr = t_hash_table_lookup(__logical_intf_name_family_rr_hash, &key);
if (!rr) {
// try other socket families
for (int i = 0; i < __SF_LAST; i++) {
key.preferred_family = get_socket_family_enum(i);
rr = t_hash_table_lookup(__logical_intf_name_family_rr_hash, &key);
if (rr)
break;
}
}
if (!rr)
return name ? __get_logical_interface(name, fam) : log;
if (rr->singular) {
__C_DBG("Returning non-RR logical interface '" STR_FORMAT "' based on direction '" \
STR_FORMAT "'",
STR_FMT(&rr->singular->name),
STR_FMT(name));
return rr->singular;
}
__C_DBG("Running RR interface selection for direction '" STR_FORMAT "'",
STR_FMT(name));
log = run_round_robin_calls(rr, num_ports);
if (log)
return log;
if (!name)
return NULL;
return __get_logical_interface(name, fam);
}
static struct logical_intf *__get_logical_interface(const str *name, sockfamily_t *fam) {
struct intf_key d;
struct logical_intf *log = NULL;
d.name = *name;
d.preferred_family = fam;
log = t_hash_table_lookup(__logical_intf_name_family_hash, &d);
if (log) {
__C_DBG("Choose logical interface " STR_FORMAT " because of direction " STR_FORMAT,
STR_FMT(&log->name),
STR_FMT(name));
} else {
__C_DBG("Choose logical interface NULL because of direction " STR_FORMAT,
STR_FMT(name));
}
return log;
}
static unsigned int __name_family_hash(const struct intf_key *lif) {
return str_hash(&lif->name) ^ g_direct_hash(lif->preferred_family);
}
static int __name_family_eq(const struct intf_key *A, const struct intf_key *B) {
return str_equal(&A->name, &B->name) && A->preferred_family == B->preferred_family;
}
static unsigned int __addr_type_hash(const struct intf_address *addr) {
return sockaddr_hash(&addr->addr) ^ g_direct_hash(addr->type);
}
static int __addr_type_eq(const struct intf_address *A, const struct intf_address *B) {
return sockaddr_eq(&A->addr, &B->addr) && A->type == B->type;
}
static void __insert_local_intf_addr_type(struct intf_address *addr, struct local_intf *intf) {
__auto_type l = t_hash_table_lookup(__local_intf_addr_type_hash, addr);
l = t_list_prepend(l, intf);
t_hash_table_replace(__local_intf_addr_type_hash, addr, l);
}
int is_local_endpoint(const struct intf_address *addr, unsigned int port) {
const struct local_intf *intf;
const struct intf_spec *spec;
__auto_type l = t_hash_table_lookup(__local_intf_addr_type_hash, addr);
if (!l)
return 0;
while (l) {
intf = l->data;
spec = intf->spec;
if (spec->port_pool.min <= port && spec->port_pool.max >= port)
return 1;
l = l->next;
}
return 0;
}
static void release_reserved_port(struct port_pool *pp, ports_q *);
/**
* This function just (globally) reserves a port number, it doesn't provide any binding/unbinding.
* Returns linked list if successful, or NULL if failed.
*/
static ports_q reserve_port(struct port_pool *pp, unsigned int port) {
ports_q ret = TYPED_GQUEUE_INIT;
if (port < pp->min || port > pp->max)
return ret;
{
LOCK(&pp->free_list_lock);
__auto_type link = free_ports_link(pp, port);
if (!link)
return ret;
// move link from free list to output
t_queue_unlink(&pp->free_ports_q, link);
free_ports_link(pp, port) = NULL;
t_queue_push_tail_link(&ret, link);
}
for (__auto_type l = pp->overlaps.head; l; l = l->next) {
__auto_type opp = l->data;
if (port < opp->min || port > opp->max)
continue;
LOCK(&opp->free_list_lock);
__auto_type link = free_ports_link(opp, port);
if (!link)
goto bail;
// move link from free list to output
t_queue_unlink(&opp->free_ports_q, link);
free_ports_link(opp, port) = NULL;
t_queue_push_tail_link(&ret, link);
}
return ret;
bail:
// Oops. Some spec didn't have the port available. Probably a race condition.
// Return everything to its place and report failure.
release_reserved_port(pp, &ret);
return ret;
}
/**
* This function just releases reserved port number, it doesn't provide any binding/unbinding.
*/
static void release_reserved_port(struct port_pool *pp, ports_q *list) {
// the list contains links in order:
// first port for port pool
// first port for first overlap pool
// first port for second overlap pool
// first port ...
// second port for port pool
// second port for first overlap pool
// ...
while (list->length) {
// remove top link from list, which belongs to our port pool
__auto_type link = t_queue_pop_head_link(list);
unsigned int port = GPOINTER_TO_UINT(link->data);
{
LOCK(&pp->free_list_lock);
t_queue_push_tail_link(&pp->free_ports_q, link);
free_ports_link(pp, port) = link;
}
for (__auto_type l = pp->overlaps.head; l; l = l->next) {
if (!list->length)
return; // ran out of items to return
assert(port == GPOINTER_TO_UINT(t_queue_peek_head(list)));
pp = l->data;
if (port < pp->min || port > pp->max)
continue;
// remove top link from list
link = t_queue_pop_head_link(list);
LOCK(&pp->free_list_lock);
t_queue_push_tail_link(&pp->free_ports_q, link);
free_ports_link(pp, port) = link;
}
}
}
/* Append a list of free ports within the min-max range */
static void __append_free_ports_to_int(struct intf_spec *spec) {
unsigned int ports_amount, count;
struct port_pool *pp = &spec->port_pool;
ports_q *free_ports_q = &pp->free_ports_q;
if (pp->max < pp->min) {
ilog(LOG_WARNING, "Ports range: max value cannot be less than min");
return;
}
/* range of possible ports */
ports_amount = pp->max - pp->min + 1;
count = ports_amount;
if (ports_amount == 0) {
ilog(LOG_WARNING, "Ports range: there must be at least 1 port in the range");
return;
}
int port_values[ports_amount];
/* create an array to store the initial values within the range */
for (int i = 0; i < ports_amount; i++)
port_values[i] = pp->min + i;
/* generate N random numbers within the given range without duplicates,
* using the rolling dice algorithm */
for (int i = 0; i < ports_amount; i++)
{
int j = ssl_random() % count;
int value = port_values[j];
mutex_lock(&pp->free_list_lock);
t_queue_push_tail(free_ports_q, GUINT_TO_POINTER(value));
/* store this new GList as value into the hash table */
__auto_type l = free_ports_q->tail;
/* The value retrieved from the hash table would then point
* into the queue for quick removal */
free_ports_link(pp, value) = l;
mutex_unlock(&pp->free_list_lock);
port_values[j] = port_values[count - 1];
count--;
}
}
// called during single-threaded startup only
static void __add_intf_rr_1(struct logical_intf *lif, str *name_base, sockfamily_t *fam) {
struct intf_key key = {0,};
key.name = *name_base;
key.preferred_family = fam;
struct intf_rr *rr = t_hash_table_lookup(__logical_intf_name_family_rr_hash, &key);
if (!rr) {
rr = g_slice_alloc0(sizeof(*rr));
rr->hash_key = key;
mutex_init(&rr->lock);
t_hash_table_insert(__logical_intf_name_family_rr_hash, &rr->hash_key, rr);
}
t_queue_push_tail(&rr->logical_intfs, lif);
rr->singular = (rr->logical_intfs.length == 1) ? lif : NULL;
t_hash_table_insert(lif->rr_specs, &rr->hash_key.name, lif);
}
static void __add_intf_rr(struct logical_intf *lif, str *name_base, sockfamily_t *fam) {
__add_intf_rr_1(lif, name_base, fam);
static str legacy_rr_str = STR_CONST("round-robin-calls");
__add_intf_rr_1(lif, &legacy_rr_str, fam);
}
static logical_intf_q *__interface_list_for_family(sockfamily_t *fam) {
return &__preferred_lists_for_family[fam->idx];
}
// called during single-threaded startup only
static void __interface_append(struct intf_config *ifa, sockfamily_t *fam, bool create) {
struct logical_intf *lif;
logical_intf_q *q;
struct local_intf *ifc;
struct intf_spec *spec;
lif = __get_logical_interface(&ifa->name, fam);
if (!lif) {
if (!create) {
// alias?
if (!ifa->alias.len)
return;
struct logical_intf *alias = __get_logical_interface(&ifa->alias, fam);
if (!alias)
return;
struct intf_key *key = g_new0(__typeof(*key), 1);
key->name = ifa->name;
key->preferred_family = fam;
t_hash_table_insert(__logical_intf_name_family_hash, key, alias);
return;
}
if (ifa->alias.len) // handled in second run
return;
lif = g_slice_alloc0(sizeof(*lif));
t_queue_init(&lif->list);
lif->name = ifa->name;
lif->name_base = ifa->name_base;
lif->preferred_family = fam;
lif->rr_specs = rr_specs_ht_new();
struct intf_key *key = g_new0(__typeof(*key), 1);
key->name = ifa->name;
key->preferred_family = fam;
t_hash_table_insert(__logical_intf_name_family_hash, key, lif);
if (ifa->local_address.addr.family == fam) {
q = __interface_list_for_family(fam);
t_queue_push_tail(q, lif);
__add_intf_rr(lif, &ifa->name_base, fam);
}
}
// make sure hash table entry exists
__auto_type spec_q = t_hash_table_lookup(__intf_spec_addr_type_hash, &ifa->local_address);
if (!spec_q) {
spec_q = intf_spec_q_new();
t_hash_table_insert(__intf_spec_addr_type_hash, &ifa->local_address, spec_q);
}
// look for existing spec with matching port range
spec = NULL;
for (__auto_type l = spec_q->head; l; l = l->next) {
spec = l->data;
if (spec->port_pool.min == ifa->port_min && spec->port_pool.max == ifa->port_max)
break;
spec = NULL;
}
if (!spec) {
// create one if not found
if (ifa->port_min == 0 || ifa->port_max == 0 || ifa->port_min > 65535
|| ifa->port_max > 65535 || ifa->port_min > ifa->port_max)
die("Invalid RTP port range (%d > %d)", ifa->port_min, ifa->port_max);
spec = g_slice_alloc0(sizeof(*spec));
spec->local_address = ifa->local_address;
spec->port_pool.free_ports = g_new0(ports_list *, ifa->port_max - ifa->port_min + 1);
spec->port_pool.min = ifa->port_min;
spec->port_pool.max = ifa->port_max;
mutex_init(&spec->port_pool.free_list_lock);
/* pre-fill the range of used ports */
__append_free_ports_to_int(spec);
for (GList *l = ifa->exclude_ports; l; l = l->next) {
unsigned int port = GPOINTER_TO_UINT(l->data);
if (port > 65535)
continue;
__auto_type pq = reserve_port(&spec->port_pool, port);
t_queue_clear(&pq);
}
// look for other specs with overlapping port ranges
for (__auto_type l = spec_q->head; l; l = l->next) {
__auto_type os = l->data;
if (os->port_pool.min > ifa->port_max)
continue;
if (os->port_pool.max < ifa->port_min)
continue;
// track overlap
t_queue_push_tail(&spec->port_pool.overlaps, &os->port_pool);
t_queue_push_tail(&os->port_pool.overlaps, &spec->port_pool);
}
t_queue_push_tail(spec_q, spec);
}
ifc = uid_alloc(&lif->list);
ice_foundation(&ifc->ice_foundation);
ifc->advertised_address = ifa->advertised_address;
ifc->spec = spec;
ifc->logical = lif;
ifc->stats = bufferpool_alloc0(shm_bufferpool, sizeof(*ifc->stats));
t_queue_push_tail(&all_local_interfaces, ifc);
__insert_local_intf_addr_type(&spec->local_address, ifc);
__insert_local_intf_addr_type(&ifc->advertised_address, ifc);
}
// called during single-threaded startup only
void interfaces_init(intf_config_q *interfaces) {
int i;
struct intf_config *ifa;
sockfamily_t *fam;
/* init everything */
__logical_intf_name_family_hash = intf_lookup_new();
__logical_intf_name_family_rr_hash = intf_rr_lookup_new();
__intf_spec_addr_type_hash = intf_spec_ht_new();
__local_intf_addr_type_hash = local_intf_ht_new();
for (i = 0; i < G_N_ELEMENTS(__preferred_lists_for_family); i++)
t_queue_init(&__preferred_lists_for_family[i]);
/* build primary lists first */
for (__auto_type l = interfaces->head; l; l = l->next) {
ifa = l->data;
__interface_append(ifa, ifa->local_address.addr.family, true);
}
/* then append to each other as lower-preference alternatives */
for (i = 0; i < __SF_LAST; i++) {
fam = get_socket_family_enum(i);
for (__auto_type l = interfaces->head; l; l = l->next) {
ifa = l->data;
if (ifa->local_address.addr.family == fam)
continue;
__interface_append(ifa, fam, false);
}
}
local_media_socket_endpoints = local_sockets_ht_new();
}
void interfaces_exclude_port(endpoint_t *e) {
for (__auto_type l = all_local_interfaces.head; l; l = l->next) {
__auto_type ifa = l->data;
__auto_type spec = ifa->spec;
if (e->address.family != spec->local_address.addr.family)
continue;
if (!is_addr_unspecified(&e->address)) {
if (!sockaddr_eq(&e->address, &spec->local_address.addr))
continue;
}
__auto_type pp = &ifa->spec->port_pool;
if (e->port < pp->min || e->port > pp->max)
continue;
__auto_type pq = reserve_port(pp, e->port);
t_queue_clear(&pq);
}
}
struct local_intf *get_interface_address(const struct logical_intf *lif, sockfamily_t *fam) {
const local_intf_q *q;
if (!fam)
return NULL;
q = &lif->list;
if (!q->head)
return NULL;
return q->head->data;
}
/* safety fallback */
struct local_intf *get_any_interface_address(const struct logical_intf *lif, sockfamily_t *fam) {
struct local_intf *ifa;
ifa = get_interface_address(lif, fam);
if (ifa)
return ifa;
ifa = get_interface_address(lif, get_socket_family_enum(SF_IP4));
if (ifa)
return ifa;
return get_interface_address(lif, get_socket_family_enum(SF_IP6));
}
/**
* Opens a socket for a given port value and edits the iptables accordingly.
* It doesn't provide a port selection logic.
*/
static bool add_socket(socket_t *r, unsigned int port, struct intf_spec *spec, const str *label) {
__C_DBG("An attempt to open a socket for the port: '%u'", port);
if (!open_socket(r, SOCK_DGRAM, port, &spec->local_address.addr)) {
__C_DBG("Can't open a socket for the port: '%d'", port);
return false;
}
iptables_add_rule(r, label);
socket_timestamping(r);
__C_DBG("A socket is successfully bound for the port: '%u'", port);
return true;
}
/**
* Pushing ports into the `ports_to_release` queue.
*/
static void release_port_push(void *p) {
struct late_port_release *lpr = p;
__C_DBG("Adding the port '%u' to late-release list", lpr->socket.local.port);
t_queue_push_tail(&ports_to_release, lpr);
}
static void release_port_poller(socket_t *r, ports_q *links, struct port_pool *pp, struct poller *poller) {
if (!r->local.port || r->fd == -1)
return;
struct late_port_release *lpr = g_slice_alloc(sizeof(*lpr));
move_socket(&lpr->socket, r);
lpr->pp = pp;
lpr->pp_links = *links;
if (!poller)
release_port_push(lpr);
else {
__C_DBG("Adding late-release callback for port '%u'", lpr->socket.local.port);
rtpe_poller_del_item_callback(poller, lpr->socket.fd, release_port_push, lpr);
}
}
static void release_port(socket_t *r, ports_q *links, struct port_pool *pp) {
release_port_poller(r, links, pp, NULL);
}
static void free_port(struct socket_port_link *spl, struct port_pool *pp) {
release_port(&spl->socket, &spl->links, pp);
g_free(spl);
}
/**
* Logic responsible for devastating the `ports_to_release` queue.
* It's being called by main poller.
*/
static void release_port_now(socket_t *r, ports_q *list, struct port_pool *pp) {
unsigned int port = r->local.port;
__C_DBG("Trying to release the port '%u'", port);
if (close_socket(r) == 0) {
__C_DBG("A socket for the '%u' has been closed", port);
iptables_del_rule(r);
/* first return the engaged port back */
release_reserved_port(pp, list);
} else {
ilog(LOG_WARNING, "Unable to close the socket for port '%u'", port);
}
}
/**
* Sockets releaser.
*/
enum thread_looper_action release_closed_sockets(void) {
struct late_port_release * lpr;
/* for the separate releaser thread (one working with `sockets_releaser()`)
* it does no job. But only for those threads related to calls processing.
*/
if (ports_to_release.head)
append_thread_lpr_to_glob_lpr();
if (ports_to_release_glob.head) {
mutex_lock(&ports_to_release_glob_lock);
ports_release_q ports_left = ports_to_release_glob;
t_queue_init(&ports_to_release_glob);
mutex_unlock(&ports_to_release_glob_lock);
while ((lpr = t_queue_pop_head(&ports_left))) {
release_port_now(&lpr->socket, &lpr->pp_links, lpr->pp);
g_slice_free1(sizeof(*lpr), lpr);
}
}
return TLA_CONTINUE;
}
/**
* Appends thread scope (local) sockets to the global releasing list.
*/
void append_thread_lpr_to_glob_lpr(void) {
mutex_lock(&ports_to_release_glob_lock);
t_queue_move(&ports_to_release_glob, &ports_to_release); /* dst, src */
mutex_unlock(&ports_to_release_glob_lock);
}
/**
* Puts a list of `socket_t` objects into the `out`.
*
* @param num_ports, number of ports we have to engage (1 - rtcp-mux / 2 - one RTP and one RTCP)
* @param wanted_start_port, a pre-defined port (if given), if not given must be 0
* @param spec, interface specifications
* @param out, a list of sockets for this particular session (not a global list)
*/
int __get_consecutive_ports(socket_port_q *out, unsigned int num_ports, unsigned int wanted_start_port,
struct intf_spec *spec, const str *label)
{
unsigned int allocation_attempts = 0, available_ports = 0, additional_port = 0, port = 0;
ports_q all_ports = TYPED_GQUEUE_INIT;
ports_q ports_to_engage = TYPED_GQUEUE_INIT; /* usually it's only one RTCP port, theoretically can be more */
struct port_pool * pp = &spec->port_pool; /* port pool for a given local interface */
ports_q *free_ports_q;
if (num_ports == 0) {
ilog(LOG_ERR, "Number of ports to be engaged is '%d', can't handle it like that",
num_ports);
goto fail;
}
/* for the wanted port, only one port can be engaged */
if (num_ports > 1 && wanted_start_port > 0) {
ilog(LOG_ERR, "A specific port value is requested, but ports to be engaged > 1");
goto fail;
}
free_ports_q = &pp->free_ports_q;
/* a presence of free lists data is critical for us */
if (!free_ports_q->head) {
ilog(LOG_ERR, "Failure while trying to get a list of free ports");
goto fail;
}
/* specifically requested port */
if (wanted_start_port > 0) {
ilog(LOG_DEBUG, "A specific port value is requested, wanted_start_port: '%d'", wanted_start_port);
all_ports = reserve_port(pp, wanted_start_port);
if (!all_ports.length) {
/* if engaged already, just select any other (so default logic) */
ilog(LOG_WARN, "This requested port has been already engaged, can't take it.");
wanted_start_port = 0; /* take what is proposed by FIFO instead */
} else {
/* we got the port, and we are sure it wasn't engaged */
port = wanted_start_port;
}
}
/* make sure we have ports to be used */
mutex_lock(&pp->free_list_lock);
available_ports = t_queue_get_length(free_ports_q);
mutex_unlock(&pp->free_list_lock);
if (!available_ports && wanted_start_port == 0) {
ilog(LOG_ERR, "Empty ports queue, no more ports left to use");
goto fail;
}
/* if there is only 1 port left, and it's not rtcp-mux, then
* it makes no sence to conitnue - ran out ports */
if (num_ports > 1 && wanted_start_port == 0 && available_ports == 1) {
ilog(LOG_ERR, "Ran out of ports, can't engage an additional port (for RTCP)");
goto fail;
}
/* Here we try to bind a port to a socket being opened.
*
* cycling here unless:
* - for non rtcp-mux: we engage two sequential ports, where RTP port is even
* and the socket for both ports can be opened (get_port())
* - for rtcp-mux: we get a socket opened for it (get_port())
* - theoretically more than 2 ports can be requested, but usually not a case.
*/
while (1)
{
new_cycle:
if (++allocation_attempts > available_ports) {
ilog(LOG_ERR, "Failure while trying to bind a port to the socket");
goto fail;
}
if (!wanted_start_port) {
/* For cases with no rtcp-mux: RTP must be an even port,
* and RTCP port is always the next one to that.
*/
/* Now only get first possible port for RTP.
* Then additionally make sure that the RTCP port can also be engaged, if needed.
*/
mutex_lock(&pp->free_list_lock);
__auto_type port_link = t_queue_pop_head_link(free_ports_q);
if (!port_link) {
mutex_unlock(&pp->free_list_lock);
ilog(LOG_ERR, "Failure while trying to get a port from the list");
goto fail;
}
port = GPOINTER_TO_UINT(port_link->data); /* RTP */
free_ports_link(pp, port) = NULL;
mutex_unlock(&pp->free_list_lock);
t_queue_push_tail_link(&all_ports, port_link);
/* ports for RTP must be even, if there is an additional port for RTCP */
if (num_ports > 1 && (port & 1)) {
/* return port for RTP back and try again */
release_reserved_port(pp, &all_ports);
goto new_cycle;
}
/* find additional ports, usually it's only RTCP */
additional_port = port;
for (int i = 1; i < num_ports; i++)
{
additional_port++;
__auto_type add_port = reserve_port(pp, additional_port);
if (!add_port.length) {
/* return port for RTP back and try again */
release_reserved_port(pp, &all_ports);
/* return additional ports back */
release_reserved_port(pp, &ports_to_engage);
goto new_cycle;
}
/* engage this port right away */
/* track for which additional ports, we have to open sockets */
t_queue_move(&ports_to_engage, &add_port);
}
}
ilog(LOG_DEBUG, "Trying to bind the socket for RTP/RTCP ports (allocation attempt = '%d')",
allocation_attempts);
/* at this point we consider all things before as successfull. Now just add the RTP port */
t_queue_move(&all_ports, &ports_to_engage);
struct socket_port_link *spl;
while (all_ports.length) {
__auto_type port_link = t_queue_pop_head_link(&all_ports);
port = GPOINTER_TO_UINT(port_link->data);
ilog(LOG_DEBUG, "Trying to bind the socket for port = '%d'", port);
spl = g_new0(struct socket_port_link, 1);
spl->socket.fd = -1;
t_queue_push_tail_link(&spl->links, port_link);
t_queue_push_tail(out, spl);
// append other links belonging to the same port
while (all_ports.length && GPOINTER_TO_UINT(t_queue_peek_head(&all_ports)) == port) {
port_link = t_queue_pop_head_link(&all_ports);
t_queue_push_tail_link(&spl->links, port_link);
}
/* if not possible to engage this socket, try to reallocate it again */
if (!add_socket(&spl->socket, port, spec, label)) {
/* if something has been left in the `ports_to_engage` queue, release it right away */
release_reserved_port(pp, &all_ports);
/* ports which are already bound to a socket, will be freed by `free_port()` */
goto release_restart;
}
}
/* success */
break;
release_restart:
/* release all previously engaged sockets */
while ((spl = t_queue_pop_head(out)))
free_port(spl, pp); /* engaged ports will be released here */
/* do not re-try for specifically wanted ports */
if (wanted_start_port > 0)
goto fail;
ilog(LOG_DEBUG, "Something already keeps this port, trying to take another port(s)");
}
/* success */
ilog(LOG_DEBUG, "Opened a socket on port '%u' (on interface '%s') for a media relay",
((socket_t *) out->head->data)->local.port, sockaddr_print_buf(&spec->local_address.addr));
return 0;
fail:
ilog(LOG_ERR, "Failed to get %u consecutive ports on interface %s for media relay (last error: %s)",
num_ports, sockaddr_print_buf(&spec->local_address.addr), strerror(errno));
return -1;
}
/* puts a list of "struct intf_list" into "out", containing socket_t list */
int get_consecutive_ports(socket_intf_list_q *out, unsigned int num_ports, unsigned int num_intfs, struct call_media *media)
{
struct socket_intf_list *il;
struct local_intf *loc;
const struct logical_intf *log = media->logical_intf;
const str *label = &media->call->callid; /* call's callid */
/*
// debug locals of logical incerface
char ip[100];
for (l = log->list.head; l; l = l->next) {
loc = l->data;
inet_ntop(loc->spec->local_address.addr.family->af, &loc->spec->local_address.addr.u, ip, sizeof(ip));
ilog(LOG_DEBUG, "XXXXXXXXXX IP: %s", ip);
}
ilog(LOG_DEBUG, "");
*/
for (auto_iter(l, log->list.head); l; l = l->next) {
if (out->length >= num_intfs)
break;
loc = l->data;
il = g_slice_alloc0(sizeof(*il));
il->local_intf = loc;
t_queue_push_tail(out, il);
if (G_LIKELY(!__get_consecutive_ports(&il->list, num_ports, 0, loc->spec, label))) {
// success - found available ports on local interfaces, so far
continue;
} else {
// fail - did not found available ports on at least one local interface
goto error_ports;
}
}
return 0;
error_ports:
ilog(LOG_ERR, "Failed to get %d consecutive ports on all locals of logical '"STR_FORMAT"'",
num_ports, STR_FMT(&log->name));
// free all ports alloc'ed so far for the previous local interfaces
while ((il = t_queue_pop_head(out))) {
free_socket_intf_list(il);
}
return -1;
}
void free_socket_intf_list(struct socket_intf_list *il) {
struct socket_port_link *spl;
while ((spl = t_queue_pop_head(&il->list)))
free_port(spl, &il->local_intf->spec->port_pool);
g_slice_free1(sizeof(*il), il);
}
void free_sfd_intf_list(struct sfd_intf_list *il) {
t_queue_clear(&il->list);
g_slice_free1(sizeof(*il), il);
}
void free_release_sfd_intf_list(struct sfd_intf_list *il) {
t_queue_clear_full(&il->list, stream_fd_release);
g_slice_free1(sizeof(*il), il);
}
/* called lock-free */
static void stream_fd_closed(int fd, void *p) {
stream_fd *sfd = p;
call_t *c;
int i;
socklen_t j;
c = sfd->call;
if (!c)
return;
rwlock_lock_r(&c->master_lock);
if (fd == sfd->socket.fd) {
j = sizeof(i);
i = 0;
// coverity[check_return : FALSE]
getsockopt(fd, SOL_SOCKET, SO_ERROR, &i, &j);
ilog(LOG_WARNING, "Read error on media socket: %i (%s) -- closing call", i, strerror(i));
}
rwlock_unlock_r(&c->master_lock);
call_destroy(c);
}
/* returns: 0 = not a muxed stream, 1 = muxed, RTP, 2 = muxed, RTCP */
static int rtcp_demux(const str *s, struct call_media *media) {
if (!MEDIA_ISSET(media, RTCP_MUX))
return 0;
return rtcp_demux_is_rtcp(s) ? 2 : 1;
}
static int call_avp2savp_rtp(str *s, struct packet_stream *stream, struct ssrc_ctx *ssrc_ctx)
{
return rtp_avp2savp(s, &stream->crypto, ssrc_ctx);
}
static int call_avp2savp_rtcp(str *s, struct packet_stream *stream, struct ssrc_ctx *ssrc_ctx)
{
return rtcp_avp2savp(s, &stream->crypto, ssrc_ctx);
}
static int call_savp2avp_rtp(str *s, struct packet_stream *stream, struct ssrc_ctx *ssrc_ctx)
{
return rtp_savp2avp(s, &stream->selected_sfd->crypto, ssrc_ctx);
}
static int call_savp2avp_rtcp(str *s, struct packet_stream *stream, struct ssrc_ctx *ssrc_ctx)
{
return rtcp_savp2avp(s, &stream->selected_sfd->crypto, ssrc_ctx);
}
static int __k_null(struct rtpengine_srtp *s, struct packet_stream *stream) {
*s = __res_null;
return 0;
}
static int __k_srtp_crypt(struct rtpengine_srtp *s, struct crypto_context *c,
struct ssrc_ctx *ssrc_ctx[RTPE_NUM_SSRC_TRACKING])
{
if (!c->params.crypto_suite)
return -1;
*s = (struct rtpengine_srtp) {
.cipher = c->params.crypto_suite->kernel_cipher,
.hmac = c->params.crypto_suite->kernel_hmac,
.mki_len = c->params.mki_len,
.rtp_auth_tag_len= c->params.crypto_suite->srtp_auth_tag,
.rtcp_auth_tag_len= c->params.crypto_suite->srtcp_auth_tag,
};
if (c->params.mki_len)
memcpy(s->mki, c->params.mki, c->params.mki_len);
memcpy(s->master_key, c->params.master_key, c->params.crypto_suite->master_key_len);
s->master_key_len = c->params.crypto_suite->master_key_len;
s->session_key_len = c->params.crypto_suite->session_key_len;
memcpy(s->master_salt, c->params.master_salt, c->params.crypto_suite->master_salt_len);
s->master_salt_len = c->params.crypto_suite->master_salt_len;
s->session_salt_len = c->params.crypto_suite->session_salt_len;
if (c->params.session_params.unencrypted_srtp)
s->cipher = REC_NULL;
if (c->params.session_params.unauthenticated_srtp)
s->rtp_auth_tag_len = 0;
return 0;
}
static int __k_srtp_encrypt(struct rtpengine_srtp *s, struct packet_stream *stream) {
return __k_srtp_crypt(s, &stream->crypto, stream->ssrc_out);
}
static int __k_srtp_decrypt(struct rtpengine_srtp *s, struct packet_stream *stream) {
return __k_srtp_crypt(s, &stream->selected_sfd->crypto, stream->ssrc_in);
}
INLINE void __re_address_translate_ep(struct re_address *o, const endpoint_t *ep) {
ep->address.family->endpoint2kernel(o, ep);
}
static int __rtp_stats_pt_sort(const void *ap, const void *bp) {
const struct rtp_stats *a = ap, *b = bp;
if (a->payload_type < b->payload_type)
return -1;
if (a->payload_type > b->payload_type)
return 1;
return 0;
}
/**
* The linkage between userspace and kernel module is in the kernelize_one().
*
* Called with in_lock held.
* sink_handler can be NULL.
*/
static const char *kernelize_one(struct rtpengine_target_info *reti, GQueue *outputs,
struct packet_stream *stream, struct sink_handler *sink_handler, sink_handler_q *sinks,
GList **payload_types)
{
struct rtpengine_destination_info *redi = NULL;
call_t *call = stream->call;
struct call_media *media = stream->media;
struct packet_stream *sink = sink_handler ? sink_handler->sink : NULL;
bool non_forwarding = false;
bool blackhole = false;
if (sink_handler) {
if (MEDIA_ISSET(sink->media, BLOCK_EGRESS))
return NULL;
sink_handler->kernel_output_idx = -1;
}
if (MEDIA_ISSET(media, BLACKHOLE))
blackhole = true;
else if (!sink_handler)
blackhole = true;
if (blackhole)
non_forwarding = true;
if (sink && !sink->endpoint.address.family)
return NULL;
if (sink && sink->selected_sfd)
ilog(LOG_INFO, "Kernelizing media stream: %s%s%s -> %s | %s -> %s%s%s",
FMT_M(endpoint_print_buf(&stream->endpoint)),
endpoint_print_buf(&stream->selected_sfd->socket.local),
endpoint_print_buf(&sink->selected_sfd->socket.local),
FMT_M(endpoint_print_buf(&sink->endpoint)));
else
ilog(LOG_INFO, "Kernelizing media stream: %s%s%s -> %s -> void",
FMT_M(endpoint_print_buf(&stream->endpoint)),
endpoint_print_buf(&stream->selected_sfd->socket.local));
const struct streamhandler *handler = __determine_handler(stream, sink_handler);
if (!handler->in->kernel || !handler->out->kernel)
return "protocol not supported by kernel module";
// fill input if needed
if (reti->local.family)
goto output;
if (PS_ISSET2(stream, STRICT_SOURCE, MEDIA_HANDOVER)) {
mutex_lock(&stream->out_lock);
__re_address_translate_ep(&reti->expected_src, MEDIA_ISSET(media, ASYMMETRIC) ? &stream->learned_endpoint : &stream->endpoint);
mutex_unlock(&stream->out_lock);
if (PS_ISSET(stream, STRICT_SOURCE))
reti->src_mismatch = MSM_DROP;
else if (PS_ISSET(stream, MEDIA_HANDOVER))
reti->src_mismatch = MSM_PROPAGATE;
}
__re_address_translate_ep(&reti->local, &stream->selected_sfd->socket.local);
reti->iface_stats = stream->selected_sfd->local_intf->stats;
reti->stats = stream->stats_in;
reti->rtcp_mux = MEDIA_ISSET(media, RTCP_MUX);
reti->rtcp = PS_ISSET(stream, RTCP);
reti->dtls = MEDIA_ISSET(media, DTLS);
reti->stun = media->ice_agent ? 1 : 0;
reti->non_forwarding = non_forwarding ? 1 : 0;
reti->blackhole = blackhole ? 1 : 0;
reti->rtp_stats = (rtpe_config.measure_rtp
|| MEDIA_ISSET(media, RTCP_GEN) || (mqtt_publish_scope() != MPS_NONE)) ? 1 : 0;
handler->in->kernel(&reti->decrypt, stream);
if (!reti->decrypt.cipher || !reti->decrypt.hmac)
return "decryption cipher or HMAC not supported by kernel module";
reti->track_ssrc = 1;
for (unsigned int u = 0; u < G_N_ELEMENTS(stream->ssrc_in); u++) {
if (stream->ssrc_in[u]) {
reti->ssrc[u] = htonl(stream->ssrc_in[u]->parent->h.ssrc);
reti->ssrc_stats[u] = stream->ssrc_in[u]->stats;
}
}
if (proto_is_rtp(media->protocol)) {
reti->rtp = 1;
reti->ssrc_req = 1;
if (!MEDIA_ISSET(media, TRANSCODING)) {
reti->rtcp_fw = 1;
if (media->protocol->avpf)
reti->rtcp_fb_fw = 1;
}
}
if (reti->rtp && sinks && sinks->length && payload_types) {
GList *l;
struct rtp_stats *rs;
// this code is execute only once: list therefore must be empty
assert(*payload_types == NULL);
*payload_types = g_hash_table_get_values(stream->rtp_stats);
*payload_types = g_list_sort(*payload_types, __rtp_stats_pt_sort);
for (l = *payload_types; l; ) {
if (reti->num_payload_types >= G_N_ELEMENTS(reti->pt_stats)) {
ilog(LOG_WARNING | LOG_FLAG_LIMIT, "Too many RTP payload types for kernel module");
break;
}
rs = l->data;
// only add payload types that are passthrough for all sinks
bool can_kernelize = true;
for (__auto_type k = sinks->head; k; k = k->next) {
struct sink_handler *ksh = k->data;
struct packet_stream *ksink = ksh->sink;
struct codec_handler *ch = codec_handler_get(media, rs->payload_type,
ksink->media, ksh);
if (ch->kernelize)
continue;
can_kernelize = false;
break;
}
if (!can_kernelize) {
reti->pt_filter = 1;
// ensure that the final list in *payload_types reflects the payload
// types populated in reti->payload_types
GList *next = l->next;
*payload_types = g_list_delete_link(*payload_types, l);
l = next;
continue;
}
reti->pt_stats[reti->num_payload_types] = rs;
reti->num_payload_types++;
l = l->next;
}
}
else {
if (sink_handler && sink_handler->attrs.transcoding)
return NULL;
}
recording_stream_kernel_info(stream, reti);
output:
// output section: any output at all?
if (non_forwarding || !sink || !sink->selected_sfd)
return NULL; // no output
if (!PS_ISSET(sink, FILLED))
return NULL;
// fill output struct
redi = g_slice_alloc0(sizeof(*redi));
redi->local = reti->local;
redi->output.tos = call->tos;
// PT manipulations
bool silenced = CALL_ISSET(call, SILENCE_MEDIA) || ML_ISSET(media->monologue, SILENCE_MEDIA)
|| sink_handler->attrs.silence_media;
bool manipulate_pt = silenced || ML_ISSET(media->monologue, BLOCK_SHORT);
if (manipulate_pt && payload_types) {
int i = 0;
for (GList *l = *payload_types; l; l = l->next) {
struct rtp_stats *rs = l->data;
struct rtpengine_pt_output *rpt = &redi->output.pt_output[i++];
struct codec_handler *ch = codec_handler_get(media, rs->payload_type,
sink->media, sink_handler);
str replace_pattern = STR_NULL;
if (silenced && ch->source_pt.codec_def)
replace_pattern = ch->source_pt.codec_def->silence_pattern;
if (replace_pattern.len > sizeof(rpt->replace_pattern))
ilog(LOG_WARNING | LOG_FLAG_LIMIT, "Payload replacement pattern too long (%zu)",
replace_pattern.len);
else {
rpt->replace_pattern_len = replace_pattern.len;
memcpy(rpt->replace_pattern, replace_pattern.s, replace_pattern.len);
}
if (ML_ISSET(media->monologue, BLOCK_SHORT) && ch->payload_len)
rpt->min_payload_len = ch->payload_len;
}
}
if (MEDIA_ISSET(media, ECHO))
redi->output.ssrc_subst = 1;
if (sink_handler->attrs.transcoding) {
redi->output.ssrc_subst = 1;
reti->pt_filter = 1;
}
mutex_lock(&sink->out_lock);
__re_address_translate_ep(&redi->output.dst_addr, &sink->endpoint);
__re_address_translate_ep(&redi->output.src_addr, &sink->selected_sfd->socket.local);
redi->output.iface_stats = sink->selected_sfd->local_intf->stats;
redi->output.stats = sink->stats_out;
if (reti->track_ssrc) {
for (unsigned int u = 0; u < G_N_ELEMENTS(stream->ssrc_in); u++) {
if (sink->ssrc_out[u]) {
// XXX order can be different from ingress?
redi->output.seq_offset[u] = sink->ssrc_out[u]->parent->seq_diff;
redi->output.ssrc_stats[u] = sink->ssrc_out[u]->stats;
}
if (redi->output.ssrc_subst && stream->ssrc_in[u])
redi->output.ssrc_out[u] = htonl(stream->ssrc_in[u]->ssrc_map_out);
}
}
handler->out->kernel(&redi->output.encrypt, sink);
mutex_unlock(&sink->out_lock);
if (!redi->output.encrypt.cipher || !redi->output.encrypt.hmac) {
g_slice_free1(sizeof(*redi), redi);
return "encryption cipher or HMAC not supported by kernel module";
}
// got a new output
redi->num = reti->num_destinations;
reti->num_destinations++;
sink_handler->kernel_output_idx = redi->num;
g_queue_push_tail(outputs, redi);
assert(outputs->length == reti->num_destinations);
return NULL;
}
// helper function for kernelize()
static void kernelize_one_sink_handler(struct rtpengine_target_info *reti, GQueue *outputs,
struct packet_stream *stream, struct sink_handler *sink_handler, sink_handler_q *sinks,
GList **payload_types)
{
struct packet_stream *sink = sink_handler->sink;
if (PS_ISSET(sink, NAT_WAIT) && !PS_ISSET(sink, RECEIVED))
return;
const char *err = kernelize_one(reti, outputs, stream, sink_handler, &stream->rtp_sinks,
payload_types);
if (err)
ilog(LOG_WARNING, "No support for kernel packet forwarding available (%s)", err);
}
/* called with in_lock held */
void kernelize(struct packet_stream *stream) {
call_t *call = stream->call;
const char *nk_warn_msg;
struct call_media *media = stream->media;
if (PS_ISSET(stream, KERNELIZED))
return;
if (call->recording != NULL && !selected_recording_method->kernel_support)
goto no_kernel;
if (!kernel.is_wanted)
goto no_kernel;
nk_warn_msg = "interface to kernel module not open";
if (!kernel.is_open)
goto no_kernel_warn;
if (MEDIA_ISSET(media, GENERATOR))
goto no_kernel;
if (!stream->selected_sfd)
goto no_kernel;
if (ML_ISSET(media->monologue, BLOCK_MEDIA) || CALL_ISSET(call, BLOCK_MEDIA))
goto no_kernel;
if (!stream->endpoint.address.family)
goto no_kernel;
struct rtpengine_target_info reti;
ZERO(reti); // reti.local.family determines if anything can be done
GQueue outputs = G_QUEUE_INIT;
GList *payload_types = NULL;
unsigned int num_sinks = stream->rtp_sinks.length + stream->rtcp_sinks.length;
if (num_sinks == 0) {
// add blackhole kernel rule
const char *err = kernelize_one(&reti, &outputs, stream, NULL, NULL, &payload_types);
if (err)
ilog(LOG_WARNING, "No support for kernel packet forwarding available (%s)", err);
}
else {
for (__auto_type l = stream->rtp_sinks.head; l; l = l->next) {
struct sink_handler *sh = l->data;
if (sh->attrs.block_media)
continue;
kernelize_one_sink_handler(&reti, &outputs, stream, sh, &stream->rtp_sinks,
&payload_types);
}
for (__auto_type l = stream->rtp_mirrors.head; l; l = l->next) {
struct sink_handler *sh = l->data;
kernelize_one_sink_handler(&reti, &outputs, stream, sh, &stream->rtp_sinks,
&payload_types);
}
// record number of RTP destinations
unsigned int num_rtp_dests = reti.num_destinations;
for (__auto_type l = stream->rtcp_sinks.head; l; l = l->next) {
struct sink_handler *sh = l->data;
kernelize_one_sink_handler(&reti, &outputs, stream, sh, &stream->rtp_sinks, NULL);
}
reti.num_rtcp_destinations = reti.num_destinations - num_rtp_dests;
}
g_list_free(payload_types);
if (!reti.local.family)
goto no_kernel;
if (!outputs.length && !reti.non_forwarding) {
reti.non_forwarding = 1;
ilog(LOG_NOTICE | LOG_FLAG_LIMIT, "Setting 'non-forwarding' flag for kernel stream due to "
"lack of sinks");
}
kernel_add_stream(&reti);
struct rtpengine_destination_info *redi;
while ((redi = g_queue_pop_head(&outputs))) {
kernel_add_destination(redi);
g_slice_free1(sizeof(*redi), redi);
}
stream->kernel_time = rtpe_now.tv_sec;
PS_SET(stream, KERNELIZED);
return;
no_kernel_warn:
ilog(LOG_WARNING, "No support for kernel packet forwarding available (%s)", nk_warn_msg);
no_kernel:
PS_SET(stream, KERNELIZED);
stream->kernel_time = rtpe_now.tv_sec;
PS_SET(stream, NO_KERNEL_SUPPORT);
}
// must be called with appropriate locks (master lock and/or in/out_lock)
int __hunt_ssrc_ctx_idx(uint32_t ssrc, struct ssrc_ctx *list[RTPE_NUM_SSRC_TRACKING],
unsigned int start_idx)
{
for (unsigned int v = 0; v < RTPE_NUM_SSRC_TRACKING; v++) {
// starting point is the same offset as `u`
unsigned int idx = (start_idx + v) % RTPE_NUM_SSRC_TRACKING;
if (!list[idx])
continue;
if (list[idx]->parent->h.ssrc != ssrc)
continue;
return idx;
}
return -1;
}
// must be called with appropriate locks (master lock and/or in/out_lock)
struct ssrc_ctx *__hunt_ssrc_ctx(uint32_t ssrc, struct ssrc_ctx *list[RTPE_NUM_SSRC_TRACKING],
unsigned int start_idx)
{
int idx = __hunt_ssrc_ctx_idx(ssrc, list, start_idx);
if (idx == -1)
return NULL;
return list[idx];
}
/* must be called with in_lock held or call->master_lock held in W */
void __unkernelize(struct packet_stream *p, const char *reason) {
if (!p->selected_sfd)
return;
if (!PS_ISSET(p, KERNELIZED))
return;
if (kernel.is_open && !PS_ISSET(p, NO_KERNEL_SUPPORT)) {
ilog(LOG_INFO, "Removing media stream from kernel: local %s (%s)",
endpoint_print_buf(&p->selected_sfd->socket.local),
reason);
struct rtpengine_command_del_target cmd = {0};
__re_address_translate_ep(&cmd.local, &p->selected_sfd->socket.local);
kernel_del_stream(&cmd);
}
PS_CLEAR(p, KERNELIZED);
PS_CLEAR(p, NO_KERNEL_SUPPORT);
}
void __reset_sink_handlers(struct packet_stream *ps) {
for (__auto_type l = ps->rtp_sinks.head; l; l = l->next) {
struct sink_handler *sh = l->data;
sh->handler = NULL;
}
for (__auto_type l = ps->rtcp_sinks.head; l; l = l->next) {
struct sink_handler *sh = l->data;
sh->handler = NULL;
}
}
void __stream_unconfirm(struct packet_stream *ps, const char *reason) {
__unkernelize(ps, reason);
if (!MEDIA_ISSET(ps->media, ASYMMETRIC)) {
if (ps->selected_sfd)
ilog(LOG_DEBUG | LOG_FLAG_LIMIT, "Unconfirming peer address for local %s (%s)",
endpoint_print_buf(&ps->selected_sfd->socket.local),
reason);
PS_CLEAR(ps, CONFIRMED);
}
__reset_sink_handlers(ps);
}
static void stream_unconfirm(struct packet_stream *ps, const char *reason) {
if (!ps)
return;
mutex_lock(&ps->in_lock);
__stream_unconfirm(ps, reason);
mutex_unlock(&ps->in_lock);
}
static void unconfirm_sinks(sink_handler_q *q, const char *reason) {
for (__auto_type l = q->head; l; l = l->next) {
struct sink_handler *sh = l->data;
stream_unconfirm(sh->sink, reason);
}
}
void unkernelize(struct packet_stream *ps, const char *reason) {
if (!ps)
return;
mutex_lock(&ps->in_lock);
__unkernelize(ps, reason);
mutex_unlock(&ps->in_lock);
}
// `out_media` can be NULL
const struct streamhandler *determine_handler(const struct transport_protocol *in_proto,
struct call_media *out_media, bool must_recrypt)
{
const struct transport_protocol *out_proto = out_media ? out_media->protocol : NULL;
const struct streamhandler * const *sh_pp, *sh;
const struct streamhandler * const * const *matrix;
matrix = __sh_matrix;
if (must_recrypt)
matrix = __sh_matrix_recrypt;
sh_pp = matrix[in_proto->index];
if (!sh_pp)
goto err;
// special handling for RTP/AVP with advertised a=rtcp-fb
int out_proto_idx = out_proto ? out_proto->index : in_proto->index;
if (out_media && MEDIA_ISSET(out_media, RTCP_FB) && out_proto) {
if (!out_proto->avpf && out_proto->avpf_proto)
out_proto_idx = out_proto->avpf_proto;
}
sh = sh_pp[out_proto_idx];
if (!sh)
goto err;
return sh;
err:
ilog(LOG_WARNING, "Unknown transport protocol encountered");
return &__sh_noop;
}
/* must be called with call->master_lock held in R, and in->in_lock held */
// `sh` can be null
static const struct streamhandler *__determine_handler(struct packet_stream *in, struct sink_handler *sh) {
const struct transport_protocol *in_proto, *out_proto;
bool must_recrypt = false;
struct packet_stream *out = sh ? sh->sink : NULL;
const struct streamhandler *ret = NULL;
if (sh && sh->handler)
return sh->handler;
if (MEDIA_ISSET(in->media, PASSTHRU))
goto noop;
in_proto = in->media->protocol;
out_proto = out ? out->media->protocol : NULL;
if (!in_proto)
goto err;
if (!sh)
must_recrypt = true;
else if (dtmf_do_logging(in->call, false))
must_recrypt = true;
else if (MEDIA_ISSET(in->media, DTLS) || (out && MEDIA_ISSET(out->media, DTLS)))
must_recrypt = true;
else if (ML_ISSET(in->media->monologue, INJECT_DTMF) || (out && ML_ISSET(out->media->monologue, INJECT_DTMF)))
must_recrypt = true;
else if (sh->attrs.transcoding)
must_recrypt = true;
else if (in->call->recording)
must_recrypt = true;
else if (in->rtp_sinks.length > 1 || in->rtcp_sinks.length > 1) // need a proper decrypter?
must_recrypt = true;
else if (in_proto->srtp && out_proto && out_proto->srtp
&& in->selected_sfd && out && out->selected_sfd
&& (crypto_params_cmp(&in->crypto.params, &out->selected_sfd->crypto.params)
|| crypto_params_cmp(&out->crypto.params, &in->selected_sfd->crypto.params)))
must_recrypt = true;
ret = determine_handler(in_proto, out ? out->media : NULL, must_recrypt);
if (sh)
sh->handler = ret;
return ret;
err:
ilog(LOG_WARNING, "Unknown transport protocol encountered");
noop:
ret = &__sh_noop;
if (sh)
sh->handler = ret;
return ret;
}
// returns non-null with reason string if stream should be removed from kernel
static const char *__stream_ssrc_inout(struct packet_stream *ps, uint32_t ssrc, mutex_t *lock,
struct ssrc_ctx *list[RTPE_NUM_SSRC_TRACKING], unsigned int *ctx_idx_p,
uint32_t output_ssrc,
struct ssrc_ctx **output, struct ssrc_hash *ssrc_hash, enum ssrc_dir dir, const char *label)
{
const char *ret = NULL;
mutex_lock(lock);
int ctx_idx = __hunt_ssrc_ctx_idx(ssrc, list, 0);
if (ctx_idx == -1) {
// SSRC mismatch - get the new entry:
ctx_idx = *ctx_idx_p;
// move to next slot
*ctx_idx_p = (*ctx_idx_p + 1) % RTPE_NUM_SSRC_TRACKING;
// eject old entry if present
if (list[ctx_idx])
ssrc_ctx_put(&list[ctx_idx]);
// get new entry
list[ctx_idx] =
get_ssrc_ctx(ssrc, ssrc_hash, dir, ps->media->monologue);
ret = "SSRC changed";
ilog(LOG_DEBUG, "New %s SSRC for: %s%s:%d SSRC: %x%s", label,
FMT_M(sockaddr_print_buf(&ps->endpoint.address), ps->endpoint.port, ssrc));
}
if (ctx_idx != 0) {
// move most recent entry to front of the list
struct ssrc_ctx *tmp = list[0];
list[0] = list[ctx_idx];
list[ctx_idx] = tmp;
ctx_idx = 0;
}
// extract and hold entry
if (*output)
ssrc_ctx_put(output);
*output = list[ctx_idx];
ssrc_ctx_hold(*output);
// reverse SSRC mapping
if (!output_ssrc)
(*output)->ssrc_map_out = ssrc;
else
(*output)->ssrc_map_out = output_ssrc;
mutex_unlock(lock);
return ret;
}
// check and update input SSRC pointers
// returns non-null with reason string if stream should be removed from kernel
static const char *__stream_ssrc_in(struct packet_stream *in_srtp, uint32_t ssrc_bs,
struct ssrc_ctx **ssrc_in_p, struct ssrc_hash *ssrc_hash)
{
return __stream_ssrc_inout(in_srtp, ntohl(ssrc_bs), &in_srtp->in_lock, in_srtp->ssrc_in,
&in_srtp->ssrc_in_idx, 0, ssrc_in_p, ssrc_hash, SSRC_DIR_INPUT, "ingress");
}
// check and update output SSRC pointers
// returns non-null with reason string if stream should be removed from kernel
static const char *__stream_ssrc_out(struct packet_stream *out_srtp, uint32_t ssrc_bs,
struct ssrc_ctx *ssrc_in, struct ssrc_ctx **ssrc_out_p, struct ssrc_hash *ssrc_hash,
bool ssrc_change)
{
if (ssrc_change)
return __stream_ssrc_inout(out_srtp, ssrc_in->ssrc_map_out, &out_srtp->out_lock,
out_srtp->ssrc_out,
&out_srtp->ssrc_out_idx, ntohl(ssrc_bs), ssrc_out_p, ssrc_hash, SSRC_DIR_OUTPUT,
"egress (mapped)");
return __stream_ssrc_inout(out_srtp, ntohl(ssrc_bs), &out_srtp->out_lock,
out_srtp->ssrc_out,
&out_srtp->ssrc_out_idx, 0, ssrc_out_p, ssrc_hash, SSRC_DIR_OUTPUT,
"egress (direct)");
}
// returns: 0 = packet processed by other protocol handler;
// -1 = packet not handled, proceed;
// 1 = same as 0, but stream can be kernelized
static int media_demux_protocols(struct packet_handler_ctx *phc) {
if (MEDIA_ISSET(phc->mp.media, DTLS) && is_dtls(&phc->s)) {
// verify DTLS packet against ICE checks if present
if (MEDIA_ISSET(phc->mp.media, ICE) && phc->mp.media->ice_agent) {
if (!ice_peer_address_known(phc->mp.media->ice_agent, &phc->mp.fsin, phc->mp.stream,
phc->mp.sfd->local_intf))
{
ilog(LOG_DEBUG, "Ignoring DTLS packet from %s%s%s to %s as no matching valid "
"ICE candidate pair exists",
FMT_M(endpoint_print_buf(&phc->mp.fsin)),
endpoint_print_buf(&phc->mp.sfd->socket.local));
return 0;
}
}
mutex_lock(&phc->mp.stream->in_lock);
int ret = dtls(phc->mp.sfd, &phc->s, &phc->mp.fsin);
if (ret == 1) {
phc->unkernelize = "DTLS connected";
phc->unkernelize_subscriptions = true;
ret = 0;
}
mutex_unlock(&phc->mp.stream->in_lock);
if (!ret)
return 0;
}
if (phc->mp.media->ice_agent && is_stun(&phc->s)) {
int stun_ret = stun(&phc->s, phc->mp.sfd, &phc->mp.fsin);
if (!stun_ret)
return 0;
if (stun_ret == 1) {
call_media_state_machine(phc->mp.media);
return 1;
}
else {
/* not an stun packet */
}
}
return -1;
}
#if RTP_LOOP_PROTECT
// returns: 0 = ok, proceed; -1 = duplicate detected, drop packet
static int media_loop_detect(struct packet_handler_ctx *phc) {
mutex_lock(&phc->mp.stream->in_lock);
for (int i = 0; i < RTP_LOOP_PACKETS; i++) {
if (phc->mp.stream->lp_buf[i].len != phc->s.len)
continue;
if (memcmp(phc->mp.stream->lp_buf[i].buf, phc->s.s, MIN(phc->s.len, RTP_LOOP_PROTECT)))
continue;
__C_DBG("packet dupe");
if (phc->mp.stream->lp_count >= RTP_LOOP_MAX_COUNT) {
ilog(LOG_WARNING, "More than %d duplicate packets detected, dropping packet from %s%s%s"
"to avoid potential loop",
RTP_LOOP_MAX_COUNT,
FMT_M(endpoint_print_buf(&phc->mp.fsin)));
mutex_unlock(&phc->mp.stream->in_lock);
return -1;
}
phc->mp.stream->lp_count++;
goto loop_ok;
}
/* not a dupe */
phc->mp.stream->lp_count = 0;
phc->mp.stream->lp_buf[phc->mp.stream->lp_idx].len = phc->s.len;
memcpy(phc->mp.stream->lp_buf[phc->mp.stream->lp_idx].buf, phc->s.s, MIN(phc->s.len, RTP_LOOP_PROTECT));
phc->mp.stream->lp_idx = (phc->mp.stream->lp_idx + 1) % RTP_LOOP_PACKETS;
loop_ok:
mutex_unlock(&phc->mp.stream->in_lock);
return 0;
}
#endif
// in_srtp is set to point to the SRTP context to use
// sinks is set to where to forward the packet to
static void media_packet_rtcp_demux(struct packet_handler_ctx *phc)
{
phc->in_srtp = phc->mp.stream;
phc->sinks = &phc->mp.stream->rtp_sinks;
// is this RTCP?
if (PS_ISSET(phc->mp.stream, RTCP)) {
int is_rtcp = 1;
// plain RTCP or are we muxing?
if (MEDIA_ISSET(phc->mp.media, RTCP_MUX)) {
is_rtcp = 0;
int muxed_rtcp = rtcp_demux(&phc->s, phc->mp.media);
if (muxed_rtcp == 2) {
is_rtcp = 1;
if (phc->mp.stream->rtcp_sibling)
phc->in_srtp = phc->mp.stream->rtcp_sibling; // use RTCP SRTP context
}
}
if (is_rtcp) {
phc->sinks = &phc->mp.stream->rtcp_sinks;
phc->rtcp = true;
}
}
}
// out_srtp is set to point to the SRTP context to use
static void media_packet_rtcp_mux(struct packet_handler_ctx *phc, struct sink_handler *sh)
{
phc->out_srtp = sh->sink;
if (phc->rtcp && sh->sink->rtcp_sibling)
phc->out_srtp = sh->sink->rtcp_sibling; // use RTCP SRTP context
phc->mp.media_out = sh->sink->media;
phc->mp.sink = *sh;
}
static void media_packet_rtp_in(struct packet_handler_ctx *phc)
{
phc->payload_type = -1;
if (G_UNLIKELY(!phc->mp.media))
return;
if (G_UNLIKELY(!proto_is_rtp(phc->mp.media->protocol)))
return;
const char *unkern = NULL;
if (G_LIKELY(!phc->rtcp && !rtp_payload(&phc->mp.rtp, &phc->mp.payload, &phc->s))) {
unkern = __stream_ssrc_in(phc->in_srtp, phc->mp.rtp->ssrc, &phc->mp.ssrc_in,
phc->mp.media->monologue->ssrc_hash);
// check the payload type
// XXX redundant between SSRC handling and codec_handler stuff -> combine
phc->payload_type = (phc->mp.rtp->m_pt & 0x7f);
if (G_LIKELY(phc->mp.ssrc_in))
payload_tracker_add(&phc->mp.ssrc_in->tracker, phc->payload_type);
// XXX yet another hash table per payload type -> combine
struct rtp_stats *rtp_s = g_atomic_pointer_get(&phc->mp.stream->rtp_stats_cache);
if (G_UNLIKELY(!rtp_s) || G_UNLIKELY(rtp_s->payload_type != phc->payload_type))
rtp_s = g_hash_table_lookup(phc->mp.stream->rtp_stats,
GUINT_TO_POINTER(phc->payload_type));
if (!rtp_s) {
ilog(LOG_WARNING | LOG_FLAG_LIMIT,
"RTP packet with unknown payload type %u received from %s%s%s",
phc->payload_type,
FMT_M(endpoint_print_buf(&phc->mp.fsin)));
atomic64_inc_na(&phc->mp.stream->stats_in->errors);
atomic64_inc_na(&phc->mp.sfd->local_intf->stats->in.errors);
RTPE_STATS_INC(errors_user);
}
else {
atomic64_inc(&rtp_s->packets);
atomic64_add(&rtp_s->bytes, phc->s.len);
g_atomic_pointer_set(&phc->mp.stream->rtp_stats_cache, rtp_s);
}
}
else if (phc->rtcp && !rtcp_payload(&phc->mp.rtcp, NULL, &phc->s)) {
unkern = __stream_ssrc_in(phc->in_srtp, phc->mp.rtcp->ssrc, &phc->mp.ssrc_in,
phc->mp.media->monologue->ssrc_hash);
}
if (unkern)
phc->unkernelize = unkern;
}
static void media_packet_rtp_out(struct packet_handler_ctx *phc, struct sink_handler *sh)
{
if (G_UNLIKELY(!proto_is_rtp(phc->mp.media->protocol)))
return;
const char *unkern = NULL;
if (G_LIKELY(!phc->rtcp && phc->mp.rtp)) {
unkern = __stream_ssrc_out(phc->out_srtp, phc->mp.rtp->ssrc, phc->mp.ssrc_in,
&phc->mp.ssrc_out, phc->mp.media_out->monologue->ssrc_hash,
sh->attrs.transcoding ? true : false);
}
else if (phc->rtcp && phc->mp.rtcp) {
unkern = __stream_ssrc_out(phc->out_srtp, phc->mp.rtcp->ssrc, phc->mp.ssrc_in,
&phc->mp.ssrc_out, phc->mp.media_out->monologue->ssrc_hash,
sh->attrs.transcoding ? true : false);
}
if (unkern)
phc->unkernelize = unkern;
}
static int media_packet_decrypt(struct packet_handler_ctx *phc)
{
mutex_lock(&phc->in_srtp->in_lock);
struct sink_handler *first_sh = phc->sinks->length ? phc->sinks->head->data : NULL;
const struct streamhandler *sh = __determine_handler(phc->in_srtp, first_sh);
// XXX use an array with index instead of if/else
if (G_LIKELY(!phc->rtcp))
phc->decrypt_func = sh->in->rtp_crypt;
else
phc->decrypt_func = sh->in->rtcp_crypt;
/* return values are: 0 = forward packet, -1 = error/don't forward,
* 1 = forward and push update to redis */
int ret = 0;
if (phc->decrypt_func) {
str ori_s = phc->s;
ret = phc->decrypt_func(&phc->s, phc->in_srtp, phc->mp.ssrc_in);
// XXX for stripped auth tag and duplicate invocations of rtp_payload
// XXX transcoder uses phc->mp.payload
phc->mp.payload.len -= ori_s.len - phc->s.len;
}
mutex_unlock(&phc->in_srtp->in_lock);
if (ret == 1) {
phc->update = true;
ret = 0;
}
return ret;
}
static void media_packet_set_encrypt(struct packet_handler_ctx *phc, struct sink_handler *sh)
{
mutex_lock(&phc->in_srtp->in_lock);
__determine_handler(phc->in_srtp, sh);
// XXX use an array with index instead of if/else
if (G_LIKELY(!phc->rtcp))
phc->encrypt_func = sh->handler->out->rtp_crypt;
else {
phc->encrypt_func = sh->handler->out->rtcp_crypt;
phc->rtcp_filter = sh->handler->in->rtcp_filter;
}
mutex_unlock(&phc->in_srtp->in_lock);
}
int media_packet_encrypt(rewrite_func encrypt_func, struct packet_stream *out, struct media_packet *mp) {
int ret = 0x00; // 0x01 = error, 0x02 = update
if (!encrypt_func)
return 0x00;
mutex_lock(&out->out_lock);
for (__auto_type l = mp->packets_out.head; l; l = l->next) {
struct codec_packet *p = l->data;
if (mp->call->recording && rtpe_config.rec_egress) {
p->plain = STR_LEN(bufferpool_alloc(media_bufferpool, p->s.len), p->s.len);
memcpy(p->plain.s, p->s.s, p->s.len);
p->plain_free_func = bufferpool_unref;
}
int encret = encrypt_func(&p->s, out, mp->ssrc_out);
if (encret == 1)
ret |= 0x02;
else if (encret != 0)
ret |= 0x01;
}
mutex_unlock(&out->out_lock);
return ret;
}
// return: -1 = error, 0 = ok
static int __media_packet_encrypt(struct packet_handler_ctx *phc, struct sink_handler *sh) {
int ret = media_packet_encrypt(phc->encrypt_func, phc->out_srtp, &phc->mp);
if (ret & 0x02)
phc->update = true;
return (ret & 0x01) ? -1 : 0;
}
// returns: drop packet true/false
static bool media_packet_address_check(struct packet_handler_ctx *phc)
{
struct endpoint endpoint;
bool ret = false;
mutex_lock(&phc->mp.stream->in_lock);
/* we're OK to (potentially) use the source address of this packet as destination
* in the other direction. */
/* if the other side hasn't been signalled yet, just forward the packet */
if (!PS_ISSET(phc->mp.stream, FILLED)) {
__C_DBG("stream %s:%d not FILLED", sockaddr_print_buf(&phc->mp.stream->endpoint.address),
phc->mp.stream->endpoint.port);
goto out;
}
// GH #697 - apparent Asterisk bug where it sends stray RTCP to the RTP port.
// work around this by detecting this situation and ignoring the packet for
// confirmation purposes when needed. This is regardless of whether rtcp-mux
// is enabled or not.
if (!PS_ISSET(phc->mp.stream, CONFIRMED) && PS_ISSET(phc->mp.stream, RTP)) {
if (rtcp_demux_is_rtcp(&phc->s)) {
ilog(LOG_DEBUG | LOG_FLAG_LIMIT, "Ignoring stray RTCP packet from %s%s%s for "
"peer address confirmation purposes",
FMT_M(endpoint_print_buf(&phc->mp.fsin)));
goto out;
}
}
PS_SET(phc->mp.stream, RECEIVED);
/* do not pay attention to source addresses of incoming packets for asymmetric streams */
if (MEDIA_ISSET(phc->mp.media, ASYMMETRIC) || phc->mp.stream->el_flags == EL_OFF) {
PS_SET(phc->mp.stream, CONFIRMED);
mutex_lock(&phc->mp.stream->out_lock);
if (MEDIA_ISSET(phc->mp.media, ASYMMETRIC) && !phc->mp.stream->learned_endpoint.address.family)
phc->mp.stream->learned_endpoint = phc->mp.fsin;
mutex_unlock(&phc->mp.stream->out_lock);
}
/* confirm sinks for unidirectional streams in order to kernelize */
if (MEDIA_ISSET(phc->mp.media, UNIDIRECTIONAL)) {
for (__auto_type l = phc->sinks->head; l; l = l->next) {
struct sink_handler *sh = l->data;
PS_SET(sh->sink, CONFIRMED);
}
}
/* if we have already updated the endpoint in the past ... */
if (PS_ISSET(phc->mp.stream, CONFIRMED)) {
/* see if we need to compare the source address with the known endpoint */
if (PS_ISSET2(phc->mp.stream, STRICT_SOURCE, MEDIA_HANDOVER)) {
endpoint = phc->mp.fsin;
mutex_lock(&phc->mp.stream->out_lock);
struct endpoint *ps_endpoint = MEDIA_ISSET(phc->mp.media, ASYMMETRIC) ?
&phc->mp.stream->learned_endpoint : &phc->mp.stream->endpoint;
int tmp = memcmp(&endpoint, ps_endpoint, sizeof(endpoint));
if (tmp && PS_ISSET(phc->mp.stream, MEDIA_HANDOVER)) {
/* out_lock remains locked */
ilog(LOG_INFO | LOG_FLAG_LIMIT, "Peer address changed to %s%s%s",
FMT_M(endpoint_print_buf(&phc->mp.fsin)));
phc->unkernelize = "peer address changed (media handover)";
phc->unconfirm = true;
phc->update = true;
*ps_endpoint = phc->mp.fsin;
goto update_addr;
}
mutex_unlock(&phc->mp.stream->out_lock);
if (tmp && PS_ISSET(phc->mp.stream, STRICT_SOURCE)) {
ilog(LOG_INFO | LOG_FLAG_LIMIT, "Drop due to strict-source attribute; "
"got %s%s:%d%s, "
"expected %s%s:%d%s",
FMT_M(sockaddr_print_buf(&endpoint.address), endpoint.port),
FMT_M(sockaddr_print_buf(&ps_endpoint->address),
ps_endpoint->port));
atomic64_inc_na(&phc->mp.stream->stats_in->errors);
atomic64_inc_na(&phc->mp.sfd->local_intf->stats->in.errors);
ret = true;
}
}
phc->kernelize = true;
goto out;
}
/* wait at least 3 seconds after last signal before committing to a particular
* endpoint address */
bool wait_time = false;
if (!phc->mp.call->last_signal || rtpe_now.tv_sec <= phc->mp.call->last_signal + 3)
wait_time = true;
const struct endpoint *use_endpoint_confirm = &phc->mp.fsin;
if (phc->mp.stream->el_flags == EL_IMMEDIATE)
goto confirm_now;
if (phc->mp.stream->el_flags == EL_HEURISTIC
&& phc->mp.stream->advertised_endpoint.address.family
&& phc->mp.stream->advertised_endpoint.port)
{
// check if we need to reset our learned endpoints
if (memcmp(&rtpe_now, &phc->mp.stream->ep_detect_signal, sizeof(rtpe_now))) {
memset(&phc->mp.stream->detected_endpoints, 0, sizeof(phc->mp.stream->detected_endpoints));
phc->mp.stream->ep_detect_signal = rtpe_now;
}
// possible endpoints that can be detected in order of preference:
// 0: endpoint that matches the address advertised in the SDP
// 1: endpoint with the same address but different port
// 2: endpoint with the same port but different address
// 3: endpoint with both different port and different address
unsigned int idx = 0;
if (phc->mp.fsin.port != phc->mp.stream->advertised_endpoint.port)
idx |= 1;
if (memcmp(&phc->mp.fsin.address, &phc->mp.stream->advertised_endpoint.address,
sizeof(sockaddr_t)))
idx |= 2;
// fill appropriate slot
phc->mp.stream->detected_endpoints[idx] = phc->mp.fsin;
// now grab the best matched endpoint
for (idx = 0; idx < 4; idx++) {
use_endpoint_confirm = &phc->mp.stream->detected_endpoints[idx];
if (use_endpoint_confirm->address.family)
break;
}
}
if (wait_time)
goto update_peerinfo;
confirm_now:
phc->kernelize = true;
phc->update = true;
ilog(LOG_INFO, "Confirmed peer address as %s%s%s", FMT_M(endpoint_print_buf(use_endpoint_confirm)));
PS_SET(phc->mp.stream, CONFIRMED);
update_peerinfo:
mutex_lock(&phc->mp.stream->out_lock);
// if we're during the wait time, check the received address against the previously
// learned address. if they're the same, ignore this packet for learning purposes
if (!wait_time || !phc->mp.stream->learned_endpoint.address.family ||
memcmp(use_endpoint_confirm, &phc->mp.stream->learned_endpoint, sizeof(endpoint)))
{
endpoint = phc->mp.stream->endpoint;
phc->mp.stream->endpoint = *use_endpoint_confirm;
phc->mp.stream->learned_endpoint = *use_endpoint_confirm;
if (memcmp(&endpoint, &phc->mp.stream->endpoint, sizeof(endpoint))) {
ilog(LOG_DEBUG | LOG_FLAG_LIMIT, "Peer address changed from %s%s%s to %s%s%s",
FMT_M(endpoint_print_buf(&endpoint)),
FMT_M(endpoint_print_buf(use_endpoint_confirm)));
phc->unkernelize = "peer address changed";
phc->update = true;
phc->unkernelize_subscriptions = true;
}
}
update_addr:
mutex_unlock(&phc->mp.stream->out_lock);
/* check the destination address of the received packet against what we think our
* local interface to use is */
if (phc->mp.stream->selected_sfd && phc->mp.sfd != phc->mp.stream->selected_sfd) {
// make sure the new interface/socket is actually one from the list of sockets
// that we intend to use, and not an old one from a previous negotiation
__auto_type contains = t_queue_find(&phc->mp.stream->sfds, phc->mp.sfd);
if (!contains)
ilog(LOG_INFO | LOG_FLAG_LIMIT, "Not switching from local socket %s to %s (not in list)",
endpoint_print_buf(&phc->mp.stream->selected_sfd->socket.local),
endpoint_print_buf(&phc->mp.sfd->socket.local));
else {
ilog(LOG_INFO | LOG_FLAG_LIMIT, "Switching local socket from %s to %s",
endpoint_print_buf(&phc->mp.stream->selected_sfd->socket.local),
endpoint_print_buf(&phc->mp.sfd->socket.local));
phc->mp.stream->selected_sfd = phc->mp.sfd;
phc->unkernelize = "local socket switched";
phc->update = true;
phc->unkernelize_subscriptions = true;
}
}
out:
mutex_unlock(&phc->mp.stream->in_lock);
return ret;
}
static void media_packet_kernel_check(struct packet_handler_ctx *phc) {
if (PS_ISSET(phc->mp.stream, NO_KERNEL_SUPPORT)) {
__C_DBG("stream %s%s%s NO_KERNEL_SUPPORT", FMT_M(endpoint_print_buf(&phc->mp.stream->endpoint)));
return;
}
if (!PS_ISSET(phc->mp.stream, CONFIRMED)) {
__C_DBG("stream %s%s%s not CONFIRMED", FMT_M(endpoint_print_buf(&phc->mp.stream->endpoint)));
return;
}
if (ML_ISSET(phc->mp.media->monologue, DTMF_INJECTION_ACTIVE))
return;
mutex_lock(&phc->mp.stream->in_lock);
kernelize(phc->mp.stream);
mutex_unlock(&phc->mp.stream->in_lock);
}
static int do_rtcp_parse(struct packet_handler_ctx *phc) {
int rtcp_ret = rtcp_parse(&phc->rtcp_list, &phc->mp);
if (rtcp_ret < 0)
return -1;
if (rtcp_ret == 1)
phc->rtcp_discard = true;
return 0;
}
static int do_rtcp_output(struct packet_handler_ctx *phc) {
if (phc->rtcp_discard)
return 0;
if (phc->kernel_handled)
return 0;
if (phc->rtcp_filter)
if (phc->rtcp_filter(&phc->mp, &phc->rtcp_list))
return -1;
// queue for output
codec_add_raw_packet(&phc->mp, 0);
return 0;
}
// appropriate locks must be held
// only frees the output queue if no `sink` is given
int media_socket_dequeue(struct media_packet *mp, struct packet_stream *sink) {
struct codec_packet *p;
while ((p = t_queue_pop_head(&mp->packets_out))) {
if (sink && sink->send_timer)
send_timer_push(sink->send_timer, p);
else
codec_packet_free(p);
}
return 0;
}
void media_packet_copy(struct media_packet *dst, const struct media_packet *src) {
*dst = *src;
t_queue_init(&dst->packets_out);
if (dst->sfd)
obj_hold(dst->sfd);
if (dst->ssrc_in)
obj_hold(&dst->ssrc_in->parent->h);
if (dst->ssrc_out)
obj_hold(&dst->ssrc_out->parent->h);
dst->rtp = __g_memdup(src->rtp, sizeof(*src->rtp));
dst->rtcp = __g_memdup(src->rtcp, sizeof(*src->rtcp));
dst->payload = STR_NULL;
dst->raw = STR_NULL;
}
void media_packet_release(struct media_packet *mp) {
if (mp->sfd)
obj_put(mp->sfd);
if (mp->ssrc_in)
obj_put(&mp->ssrc_in->parent->h);
if (mp->ssrc_out)
obj_put(&mp->ssrc_out->parent->h);
media_socket_dequeue(mp, NULL);
g_free(mp->rtp);
g_free(mp->rtcp);
ZERO(*mp);
}
static int media_packet_queue_dup(codec_packet_q *q) {
for (__auto_type l = q->head; l; l = l->next) {
struct codec_packet *p = l->data;
if (p->free_func) // nothing to do, already private
continue;
if (!codec_packet_copy(p))
return -1;
}
return 0;
}
/**
* Packet handling starts in stream_packet().
*
* This operates on the originating stream_fd (fd which received the packet)
* and on its linked packet_stream.
*
* Eventually proceeds to going through the list of sinks,
* either rtp_sinks or rtcp_sinks (egress handling).
*
* called lock-free.
*/
static int stream_packet(struct packet_handler_ctx *phc) {
/**
* Incoming packets (ingress):
* - phc->mp.sfd->socket.local: the local IP/port on which the packet arrived
* - phc->mp.sfd->stream->endpoint: adjusted/learned IP/port from where the packet
* was sent
* - phc->mp.sfd->stream->advertised_endpoint: the unadjusted IP/port from where the
* packet was sent. These are the values present in the SDP
*
* Outgoing packets (egress):
* - sh_link = phc->sinks->head (ptr to Gqueue with sinks), then
* sh = sh_link->data (ptr to handler, implicit cast), then
* sh->sink->endpoint: the destination IP/port
* - sh->sink->selected_sfd->socket.local: the local source IP/port for the
* outgoing packet (same way it gets sinks from phc->sinks)
*
* If rtpengine runs behind a NAT and local addresses are configured with
* different advertised endpoints, the SDP would not contain the address from
* `...->socket.local.address`, but rather from `...->local_intf->advertised_address.addr`
* (of type `sockaddr_t`). The port will be the same.
*
* TODO: move the above comments to the data structure definitions, if the above
* always holds true */
int ret = 0, handler_ret = 0;
GQueue free_list = G_QUEUE_INIT;
phc->mp.call = phc->mp.sfd->call;
rwlock_lock_r(&phc->mp.call->master_lock);
phc->mp.stream = phc->mp.sfd->stream;
if (G_UNLIKELY(!phc->mp.stream))
goto out;
__C_DBG("Handling packet on: %s", endpoint_print_buf(&phc->mp.stream->endpoint));
phc->mp.media = phc->mp.stream->media;
///////////////// INGRESS HANDLING
if (!phc->mp.stream->selected_sfd)
goto out;
CALL_CLEAR(phc->mp.call, FOREIGN_MEDIA);
if (CALL_ISSET(phc->mp.call, DROP_TRAFFIC))
goto drop;
int stun_ret = media_demux_protocols(phc);
if (stun_ret == 0) // packet processed
goto out;
if (stun_ret == 1) {
media_packet_kernel_check(phc);
goto drop;
}
#if RTP_LOOP_PROTECT
if (MEDIA_ISSET(phc->mp.media, LOOP_CHECK)) {
if (media_loop_detect(phc))
goto out;
}
#endif
// this sets rtcp, in_srtp, and sinks
media_packet_rtcp_demux(phc);
if (media_packet_address_check(phc))
goto drop;
if (rtpe_config.active_switchover && IS_FOREIGN_CALL(phc->mp.call))
call_make_own_foreign(phc->mp.call, false);
bool is_blackhole = MEDIA_ISSET(phc->mp.media, BLACKHOLE);
if (!is_blackhole)
is_blackhole = !phc->rtcp && !MEDIA_ISSET(phc->mp.media, RECV);
// this set payload_type, ssrc_in, and mp payloads
media_packet_rtp_in(phc);
if (phc->mp.rtp)
ilog(LOG_DEBUG, "Handling packet: remote %s%s%s (expected: %s%s%s) -> local %s "
"(RTP seq %u TS %u SSRC %s%x%s)",
FMT_M(endpoint_print_buf(&phc->mp.fsin)),
FMT_M(endpoint_print_buf(&phc->mp.stream->endpoint)),
endpoint_print_buf(&phc->mp.sfd->socket.local),
ntohs(phc->mp.rtp->seq_num),
ntohl(phc->mp.rtp->timestamp),
FMT_M(ntohl(phc->mp.rtp->ssrc)));
else
ilog(LOG_DEBUG, "Handling packet: remote %s%s%s (expected: %s%s%s) -> local %s",
FMT_M(endpoint_print_buf(&phc->mp.fsin)),
FMT_M(endpoint_print_buf(&phc->mp.stream->endpoint)),
endpoint_print_buf(&phc->mp.sfd->socket.local));
// SSRC receive stats
if (phc->mp.ssrc_in && phc->mp.rtp) {
atomic64_inc_na(&phc->mp.ssrc_in->stats->packets);
atomic64_add_na(&phc->mp.ssrc_in->stats->bytes, phc->s.len);
// no real sequencing, so this is rudimentary
unsigned int old_seq = atomic_get_na(&phc->mp.ssrc_in->stats->ext_seq);
unsigned int new_seq = ntohs(phc->mp.rtp->seq_num) | (old_seq & 0xffff0000UL);
// XXX combine this with similar code elsewhere
int seq_diff = new_seq - old_seq;
while (seq_diff < -60000) {
new_seq += 0x10000;
seq_diff += 0x10000;
}
if (seq_diff > 0 || seq_diff < -10) {
atomic_set_na(&phc->mp.ssrc_in->stats->ext_seq, new_seq);
atomic_set_na(&phc->mp.ssrc_in->stats->timestamp, ntohl(phc->mp.rtp->timestamp));
}
}
// decrypt in place
// XXX check handler_ret along the paths
handler_ret = media_packet_decrypt(phc);
if (handler_ret < 0)
goto out; // receive error
rtp_padding(phc->mp.rtp, &phc->mp.payload);
// If recording pcap dumper is set, then we record the call.
if (phc->mp.call->recording && !rtpe_config.rec_egress)
dump_packet(&phc->mp, &phc->s);
phc->mp.raw = phc->s;
if (atomic64_inc_na(&phc->mp.stream->stats_in->packets) == 0) {
if (phc->mp.stream->component == 1) {
if (phc->mp.media->index == 1)
janus_rtc_up(phc->mp.media->monologue);
janus_media_up(phc->mp.media);
}
}
atomic64_add_na(&phc->mp.stream->stats_in->bytes, phc->s.len);
atomic64_inc_na(&phc->mp.sfd->local_intf->stats->in.packets);
atomic64_add_na(&phc->mp.sfd->local_intf->stats->in.bytes, phc->s.len);
atomic64_set(&phc->mp.stream->last_packet, rtpe_now.tv_sec);
RTPE_STATS_INC(packets_user);
RTPE_STATS_ADD(bytes_user, phc->s.len);
///////////////// EGRESS HANDLING
str orig_raw = STR_NULL;
for (__auto_type sh_link = phc->sinks->head; sh_link; sh_link = sh_link->next) {
struct sink_handler *sh = sh_link->data;
struct packet_stream *sink = sh->sink;
// this sets rtcp, in_srtp, out_srtp, media_out, and sink
media_packet_rtcp_mux(phc, sh);
// this set ssrc_out
media_packet_rtp_out(phc, sh);
rtcp_list_free(&phc->rtcp_list);
if (phc->rtcp) {
phc->rtcp_discard = false;
handler_ret = -1;
// these functions may do in-place rewriting, but we may have multiple
// outputs - make a copy if this isn't the last sink
if (sh_link->next) {
if (!orig_raw.s)
orig_raw = phc->mp.raw;
char *buf = bufferpool_alloc(media_bufferpool, orig_raw.len + RTP_BUFFER_TAIL_ROOM);
memcpy(buf, orig_raw.s, orig_raw.len);
phc->mp.raw.s = buf;
g_queue_push_tail(&free_list, buf);
}
if (do_rtcp_parse(phc))
goto out;
if (phc->rtcp_discard)
goto next;
}
else {
if (sh->attrs.rtcp_only)
goto next;
}
if (PS_ISSET(sink, NAT_WAIT) && !PS_ISSET(sink, RECEIVED)) {
ilog(LOG_DEBUG | LOG_FLAG_LIMIT,
"Media packet from %s%s%s discarded due to `NAT-wait` flag",
FMT_M(endpoint_print_buf(&phc->mp.fsin)));
goto next;
}
if (G_UNLIKELY(!sink->selected_sfd || !phc->out_srtp
|| !phc->out_srtp->selected_sfd || !phc->in_srtp->selected_sfd))
{
errno = ENOENT;
ilog(LOG_WARNING | LOG_FLAG_LIMIT,
"Media packet from %s%s%s discarded due to lack of sink",
FMT_M(endpoint_print_buf(&phc->mp.fsin)));
goto err_next;
}
media_packet_set_encrypt(phc, sh);
if (phc->rtcp) {
if (do_rtcp_output(phc))
goto err_next;
}
else {
struct codec_handler *transcoder = codec_handler_get(phc->mp.media, phc->payload_type,
phc->mp.media_out, sh);
// this transfers the packet from 's' to 'packets_out'
if (transcoder->handler_func(transcoder, &phc->mp))
goto err_next;
}
// if this is not the last sink, duplicate the output queue packets if necessary
if (sh_link->next) {
ret = media_packet_queue_dup(&phc->mp.packets_out);
errno = ENOMEM;
if (ret)
goto err_next;
}
// egress mirroring
if (!phc->rtcp) {
for (__auto_type mirror_link = phc->mp.stream->rtp_mirrors.head; mirror_link;
mirror_link = mirror_link->next)
{
struct packet_handler_ctx mirror_phc = *phc;
mirror_phc.mp.ssrc_out = NULL;
t_queue_init(&mirror_phc.mp.packets_out);
struct sink_handler *mirror_sh = mirror_link->data;
struct packet_stream *mirror_sink = mirror_sh->sink;
media_packet_rtcp_mux(&mirror_phc, mirror_sh);
media_packet_rtp_out(&mirror_phc, mirror_sh);
media_packet_set_encrypt(&mirror_phc, mirror_sh);
for (__auto_type pack = phc->mp.packets_out.head; pack; pack = pack->next) {
struct codec_packet *p = pack->data;
t_queue_push_tail(&mirror_phc.mp.packets_out, codec_packet_dup(p));
}
ret = __media_packet_encrypt(&mirror_phc, mirror_sh);
if (ret)
goto next_mirror;
mutex_lock(&mirror_sink->out_lock);
if (!mirror_sink->advertised_endpoint.port
|| (is_addr_unspecified(&mirror_sink->advertised_endpoint.address)
&& !is_trickle_ice_address(&mirror_sink->advertised_endpoint)))
{
mutex_unlock(&mirror_sink->out_lock);
goto next_mirror;
}
media_socket_dequeue(&mirror_phc.mp, mirror_sink);
mutex_unlock(&mirror_sink->out_lock);
next_mirror:
media_socket_dequeue(&mirror_phc.mp, NULL); // just free if anything left
ssrc_ctx_put(&mirror_phc.mp.ssrc_out);
}
}
ret = __media_packet_encrypt(phc, sh);
errno = ENOTTY;
if (ret == -1)
goto err_next;
mutex_lock(&sink->out_lock);
if (!sink->advertised_endpoint.port
|| (is_addr_unspecified(&sink->advertised_endpoint.address)
&& !is_trickle_ice_address(&sink->advertised_endpoint)))
{
mutex_unlock(&sink->out_lock);
goto next;
}
if (!is_blackhole)
ret = media_socket_dequeue(&phc->mp, sink);
else
ret = media_socket_dequeue(&phc->mp, NULL);
mutex_unlock(&sink->out_lock);
if (ret == 0)
goto next;
err_next:
ilog(LOG_DEBUG | LOG_FLAG_LIMIT ,"Error when sending message. Error: %s", strerror(errno));
atomic64_inc_na(&sink->stats_in->errors);
if (sink->selected_sfd)
atomic64_inc_na(&sink->selected_sfd->local_intf->stats->out.errors);
RTPE_STATS_INC(errors_user);
goto next;
next:
media_socket_dequeue(&phc->mp, NULL); // just free if anything left
ssrc_ctx_put(&phc->mp.ssrc_out);
}
///////////////// INGRESS POST-PROCESSING HANDLING
if (phc->unkernelize) // for RTCP packet index updates
unkernelize(phc->mp.stream, phc->unkernelize);
if (phc->kernelize)
media_packet_kernel_check(phc);
drop:
ret = 0;
handler_ret = 0;
out:
if (phc->unconfirm) {
stream_unconfirm(phc->mp.stream, "peer address unconfirmed");
unconfirm_sinks(&phc->mp.stream->rtp_sinks, "peer address unconfirmed");
unconfirm_sinks(&phc->mp.stream->rtcp_sinks, "peer address unconfirmed");
}
if (phc->unkernelize_subscriptions) {
g_auto(GQueue) mls = G_QUEUE_INIT; /* to avoid duplications */
for (__auto_type sub = phc->mp.media->media_subscriptions.head; sub; sub = sub->next)
{
struct media_subscription * ms = sub->data;
if (!g_queue_find(&mls, ms->monologue)) {
for (unsigned int k = 0; k < ms->monologue->medias->len; k++)
{
struct call_media *sub_media = ms->monologue->medias->pdata[k];
if (!sub_media)
continue;
for (__auto_type m = sub_media->streams.head; m; m = m->next) {
struct packet_stream *sub_ps = m->data;
__unkernelize(sub_ps, "subscriptions modified");
}
}
g_queue_push_tail(&mls, ms->monologue);
}
}
}
if (handler_ret < 0) {
atomic64_inc_na(&phc->mp.stream->stats_in->errors);
atomic64_inc_na(&phc->mp.sfd->local_intf->stats->in.errors);
RTPE_STATS_INC(errors_user);
}
rwlock_unlock_r(&phc->mp.call->master_lock);
media_socket_dequeue(&phc->mp, NULL); // just free
ssrc_ctx_put(&phc->mp.ssrc_out);
ssrc_ctx_put(&phc->mp.ssrc_in);
rtcp_list_free(&phc->rtcp_list);
g_queue_clear_full(&free_list, bufferpool_unref);
return ret;
}
static void __stream_fd_readable(struct packet_handler_ctx *phc) {
struct stream_fd *sfd = phc->mp.sfd;
if (phc->mp.tv.tv_sec < 0) {
// kernel-handled RTCP
phc->kernel_handled = true;
// restore original actual timestamp
if (G_UNLIKELY(phc->mp.tv.tv_usec == 0))
phc->mp.tv.tv_sec = -phc->mp.tv.tv_sec;
else {
phc->mp.tv.tv_sec = -phc->mp.tv.tv_sec - 1;
phc->mp.tv.tv_usec = 1000000 - phc->mp.tv.tv_usec;
}
}
int ret;
if (sfd->stream && sfd->stream->jb) {
ret = buffer_packet(&phc->mp, &phc->s);
if (ret == 1)
ret = stream_packet(phc);
}
else
ret = stream_packet(phc);
if (G_UNLIKELY(ret < 0))
ilog(LOG_WARNING | LOG_FLAG_LIMIT, "Write error on media socket: %s", strerror(-ret));
}
static void stream_fd_readable(int fd, void *p) {
stream_fd *sfd = p;
int ret, iters;
bool update = false;
call_t *ca;
if (sfd->socket.fd != fd)
return;
// +1 to active read events. If it was zero then we handle it. If it was non-zero,
// another thread is already handling this socket and will process our event.
if (g_atomic_int_add(&sfd->active_read_events, 1) != 0)
return;
ca = sfd->call ? : NULL;
log_info_stream_fd(sfd);
int strikes = g_atomic_int_get(&sfd->error_strikes);
if (strikes >= MAX_RECV_LOOP_STRIKES) {
ilog(LOG_WARN | LOG_FLAG_LIMIT, "UDP receive queue exceeded %i times: "
"discarding packet", strikes);
// Polling is edge-triggered so we won't immediately get here again.
// We could remove ourselves from the poller though. Maybe call stream_fd_closed?
return;
}
restart:
for (iters = 0; ; iters++) {
#if MAX_RECV_ITERS
if (iters >= rtpe_config.max_recv_iters) {
ilog(LOG_WARN | LOG_FLAG_LIMIT, "Too many packets in UDP receive queue (more than %d), "
"aborting loop. Dropped packets possible", iters);
g_atomic_int_inc(&sfd->error_strikes);
g_atomic_int_set(&sfd->active_read_events,0);
goto strike;
}
#endif
struct packet_handler_ctx phc;
ZERO(phc);
phc.mp.sfd = sfd;
if (ca) {
rwlock_lock_r(&ca->master_lock);
if (sfd->socket.fd != fd) {
rwlock_unlock_r(&ca->master_lock);
goto done;
}
}
g_autoptr(bp_char) buf = bufferpool_alloc(media_bufferpool, RTP_BUFFER_SIZE);
ret = socket_recvfrom_ts(&sfd->socket, buf + RTP_BUFFER_HEAD_ROOM, MAX_RTP_PACKET_SIZE,
&phc.mp.fsin, &phc.mp.tv);
if (ca)
rwlock_unlock_r(&ca->master_lock);
if (ret < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN || errno == EWOULDBLOCK)
break;
stream_fd_closed(fd, sfd);
goto done;
}
if (ret >= MAX_RTP_PACKET_SIZE)
ilog(LOG_WARNING | LOG_FLAG_LIMIT, "UDP packet possibly truncated");
phc.s = STR_LEN(buf + RTP_BUFFER_HEAD_ROOM, ret);
__stream_fd_readable(&phc);
update += phc.update;
}
// -1 active read events. If it's non-zero, another thread has received a read event,
// and we must handle it here.
if (!g_atomic_int_dec_and_test(&sfd->active_read_events))
goto restart;
// no strike
if (strikes > 0)
g_atomic_int_compare_and_exchange(&sfd->error_strikes, strikes, strikes - 1);
strike:
if (ca && update) {
redis_update_onekey(ca, rtpe_redis_write);
}
done:
log_info_pop();
}
static void stream_fd_recv(struct obj *obj, char *buf, size_t len, struct sockaddr *sa, struct timeval *tv) {
struct stream_fd *sfd = (struct stream_fd *) obj;
call_t *ca = sfd->call;
if (!ca)
goto out;
rwlock_lock_r(&ca->master_lock);
if (sfd->socket.fd == -1) {
rwlock_unlock_r(&ca->master_lock);
goto out;
}
log_info_stream_fd(sfd);
rwlock_unlock_r(&ca->master_lock);
struct packet_handler_ctx phc;
ZERO(phc);
phc.mp.sfd = sfd;
sfd->socket.family->sockaddr2endpoint(&phc.mp.fsin, sa);
phc.s = STR_LEN(buf, len);
__stream_fd_readable(&phc);
if (phc.update)
redis_update_onekey(ca, rtpe_redis_write);
out:
log_info_pop();
bufferpool_unref(buf);
}
static void stream_fd_free(stream_fd *f) {
release_port(&f->socket, &f->port_pool_links, &f->local_intf->spec->port_pool);
crypto_cleanup(&f->crypto);
dtls_connection_cleanup(&f->dtls);
obj_put(f->call);
}
stream_fd *stream_fd_new(socket_t *fd, ports_q *links, call_t *call, struct local_intf *lif) {
stream_fd *sfd;
struct poller_item pi;
sfd = obj_alloc0(stream_fd, stream_fd_free);
sfd->unique_id = t_queue_get_length(&call->stream_fds);
sfd->socket = *fd;
sfd->call = obj_get(call);
sfd->local_intf = lif;
if (links)
sfd->port_pool_links = *links;
t_queue_push_tail(&call->stream_fds, sfd); /* hand over ref */
__C_DBG("stream_fd_new localport=%d", sfd->socket.local.port);
ZERO(pi);
pi.fd = sfd->socket.fd;
pi.obj = &sfd->obj;
pi.readable = stream_fd_readable;
pi.recv = stream_fd_recv;
pi.closed = stream_fd_closed;
if (sfd->socket.fd != -1) {
struct poller *p = call->poller;
if (!rtpe_poller_add_item(p, &pi))
ilog(LOG_ERR, "Failed to add stream_fd to poller");
else
sfd->poller = p;
RWLOCK_W(&local_media_socket_endpoints_lock);
t_hash_table_replace(local_media_socket_endpoints, &sfd->socket.local, obj_get(sfd));
}
return sfd;
}
stream_fd *stream_fd_lookup(const endpoint_t *ep) {
RWLOCK_R(&local_media_socket_endpoints_lock);
stream_fd *ret = t_hash_table_lookup(local_media_socket_endpoints, ep);
if (!ret)
return NULL;
obj_hold(ret);
return ret;
}
void stream_fd_release(stream_fd *sfd) {
if (!sfd)
return;
if (sfd->socket.fd == -1)
return;
{
RWLOCK_W(&local_media_socket_endpoints_lock);
stream_fd *ent = t_hash_table_lookup(local_media_socket_endpoints, &sfd->socket.local);
if (ent == sfd)
t_hash_table_remove(local_media_socket_endpoints,
&sfd->socket.local); // releases reference
}
release_port_poller(&sfd->socket, &sfd->port_pool_links, &sfd->local_intf->spec->port_pool, sfd->poller);
}
const struct transport_protocol *transport_protocol(const str *s) {
int i;
if (!s || !s->s)
goto out;
for (i = 0; i < num_transport_protocols; i++) {
if (strlen(transport_protocols[i].name) != s->len)
continue;
if (strncasecmp(transport_protocols[i].name, s->s, s->len))
continue;
return &transport_protocols[i];
}
out:
return NULL;
}
void play_buffered(struct jb_packet *cp) {
struct packet_handler_ctx phc;
ZERO(phc);
phc.mp = cp->mp;
phc.s = cp->mp.raw;
//phc.buffered_packet = buffered;
stream_packet(&phc);
jb_packet_free(&cp);
}
void interfaces_free(void) {
struct local_intf *ifc;
while ((ifc = t_queue_pop_head(&all_local_interfaces))) {
free(ifc->ice_foundation.s);
bufferpool_unref(ifc->stats);
g_free(ifc);
}
t_hash_table_destroy(__logical_intf_name_family_hash);
local_intf_ht_iter l_iter;
t_hash_table_iter_init(&l_iter, __local_intf_addr_type_hash);
local_intf_list *lifl;
while (t_hash_table_iter_next(&l_iter, NULL, &lifl))
t_list_free(lifl);
t_hash_table_destroy(__local_intf_addr_type_hash);
intf_spec_ht_iter s_iter;
t_hash_table_iter_init(&s_iter, __intf_spec_addr_type_hash);
intf_spec_q *spec_q;
while (t_hash_table_iter_next(&s_iter, NULL, &spec_q)) {
while (spec_q->length) {
__auto_type spec = t_queue_pop_head(spec_q);
struct port_pool *pp = &spec->port_pool;
t_queue_clear(&pp->free_ports_q);
mutex_destroy(&pp->free_list_lock);
t_queue_clear(&pp->overlaps);
g_free(pp->free_ports);
g_slice_free1(sizeof(*spec), spec);
}
t_queue_free(spec_q);
}
t_hash_table_destroy(__intf_spec_addr_type_hash);
intf_rr_lookup_iter r_iter;
t_hash_table_iter_init(&r_iter, __logical_intf_name_family_rr_hash);
struct intf_rr *rr;
while (t_hash_table_iter_next(&r_iter, NULL, &rr)) {
t_queue_clear(&rr->logical_intfs);
g_slice_free1(sizeof(*rr), rr);
}
t_hash_table_destroy(__logical_intf_name_family_rr_hash);
for (int i = 0; i < G_N_ELEMENTS(__preferred_lists_for_family); i++) {
logical_intf_q *q = &__preferred_lists_for_family[i];
while (q->length) {
__auto_type lif = t_queue_pop_head(q);
t_hash_table_destroy(lif->rr_specs);
t_queue_clear(&lif->list);
g_slice_free1(sizeof(*lif), lif);
}
}
t_hash_table_destroy(local_media_socket_endpoints);
local_media_socket_endpoints = local_sockets_ht_null();
}
static void interface_stats_block_free(void *p) {
g_slice_free1(sizeof(struct interface_stats_interval), p);
}
void interface_sampled_rate_stats_init(struct interface_sampled_rate_stats *s) {
s->ht = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
interface_stats_block_free);
}
void interface_sampled_rate_stats_destroy(struct interface_sampled_rate_stats *s) {
g_hash_table_destroy(s->ht);
}
struct interface_stats_block *interface_sampled_rate_stats_get(struct interface_sampled_rate_stats *s,
struct local_intf *lif, long long *time_diff_us)
{
if (!s)
return NULL;
struct interface_stats_interval *ret = g_hash_table_lookup(s->ht, lif);
if (!ret) {
ret = g_slice_alloc0(sizeof(*ret));
g_hash_table_insert(s->ht, lif, ret);
}
if (ret->last_run.tv_sec)
*time_diff_us = timeval_diff(&rtpe_now, &ret->last_run);
else
*time_diff_us = 0;
ret->last_run = rtpe_now;
return &ret->stats;
}