You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtpengine/lib/codeclib.c

2349 lines
64 KiB

#include "codeclib.h"
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libavfilter/avfilter.h>
#include <libavutil/opt.h>
#include <glib.h>
#include <arpa/inet.h>
#ifdef HAVE_BCG729
#include <bcg729/encoder.h>
#include <bcg729/decoder.h>
#endif
#include "str.h"
#include "log.h"
#include "loglib.h"
#include "resample.h"
#include "rtplib.h"
#include "bitstr.h"
#include "dtmflib.h"
#define PACKET_SEQ_DUPE_THRES 100
#define PACKET_TS_RESET_THRES 5000 // milliseconds
#define cdbg(x...) ilogs(internals, LOG_DEBUG, x)
static packetizer_f packetizer_passthrough; // pass frames as they arrive in AVPackets
static packetizer_f packetizer_samplestream; // flat stream of samples
static packetizer_f packetizer_amr;
static format_init_f opus_init;
static set_enc_options_f opus_set_enc_options;
static set_enc_options_f ilbc_set_enc_options;
static set_dec_options_f ilbc_set_dec_options;
static set_enc_options_f amr_set_enc_options;
static set_dec_options_f amr_set_dec_options;
static void avc_def_init(codec_def_t *);
static const char *avc_decoder_init(decoder_t *, const str *, const str *);
static int avc_decoder_input(decoder_t *dec, const str *data, GQueue *out);
static void avc_decoder_close(decoder_t *);
static const char *avc_encoder_init(encoder_t *enc, const str *, const str *);
static int avc_encoder_input(encoder_t *enc, AVFrame **frame);
static void avc_encoder_close(encoder_t *enc);
static int amr_decoder_input(decoder_t *dec, const str *data, GQueue *out);
static void amr_encoder_got_packet(encoder_t *enc);
static int ilbc_decoder_input(decoder_t *dec, const str *data, GQueue *out);
static const char *dtmf_decoder_init(decoder_t *, const str *, const str *);
static int dtmf_decoder_input(decoder_t *dec, const str *data, GQueue *out);
static int cn_decoder_input(decoder_t *dec, const str *data, GQueue *out);
static int format_cmp_ignore(const struct rtp_payload_type *, const struct rtp_payload_type *);
static int amr_packet_lost(decoder_t *, GQueue *);
static const codec_type_t codec_type_avcodec = {
.def_init = avc_def_init,
.decoder_init = avc_decoder_init,
.decoder_input = avc_decoder_input,
.decoder_close = avc_decoder_close,
.encoder_init = avc_encoder_init,
.encoder_input = avc_encoder_input,
.encoder_close = avc_encoder_close,
};
static const codec_type_t codec_type_ilbc = {
.def_init = avc_def_init,
.decoder_init = avc_decoder_init,
.decoder_input = ilbc_decoder_input,
.decoder_close = avc_decoder_close,
.encoder_init = avc_encoder_init,
.encoder_input = avc_encoder_input,
.encoder_close = avc_encoder_close,
};
static const codec_type_t codec_type_amr = {
.def_init = avc_def_init,
.decoder_init = avc_decoder_init,
.decoder_input = amr_decoder_input,
.decoder_close = avc_decoder_close,
.encoder_init = avc_encoder_init,
.encoder_input = avc_encoder_input,
.encoder_got_packet = amr_encoder_got_packet,
.encoder_close = avc_encoder_close,
};
static const codec_type_t codec_type_dtmf = {
.decoder_init = dtmf_decoder_init,
.decoder_input = dtmf_decoder_input,
};
static const codec_type_t codec_type_cn = {
.def_init = avc_def_init,
.decoder_init = avc_decoder_init,
.decoder_input = cn_decoder_input,
.decoder_close = avc_decoder_close,
};
#ifdef HAVE_BCG729
static packetizer_f packetizer_g729; // aggregate some frames into packets
static void bcg729_def_init(codec_def_t *);
static const char *bcg729_decoder_init(decoder_t *, const str *, const str *);
static int bcg729_decoder_input(decoder_t *dec, const str *data, GQueue *out);
static void bcg729_decoder_close(decoder_t *);
static const char *bcg729_encoder_init(encoder_t *enc, const str *, const str *);
static int bcg729_encoder_input(encoder_t *enc, AVFrame **frame);
static void bcg729_encoder_close(encoder_t *enc);
static const codec_type_t codec_type_bcg729 = {
.def_init = bcg729_def_init,
.decoder_init = bcg729_decoder_init,
.decoder_input = bcg729_decoder_input,
.decoder_close = bcg729_decoder_close,
.encoder_init = bcg729_encoder_init,
.encoder_input = bcg729_encoder_input,
.encoder_close = bcg729_encoder_close,
};
#endif
static codec_def_t __codec_defs[] = {
{
.rtpname = "PCMA",
.avcodec_id = AV_CODEC_ID_PCM_ALAW,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.packetizer = packetizer_samplestream,
.bits_per_sample = 8,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "PCMU",
.avcodec_id = AV_CODEC_ID_PCM_MULAW,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.packetizer = packetizer_samplestream,
.bits_per_sample = 8,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "G723",
.avcodec_id = AV_CODEC_ID_G723_1,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 30,
.default_bitrate = 6300,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "G722",
.avcodec_id = AV_CODEC_ID_ADPCM_G722,
.clockrate_mult = 2,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.packetizer = packetizer_samplestream,
.bits_per_sample = 8,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "QCELP",
.avcodec_id = AV_CODEC_ID_QCELP,
.clockrate_mult = 1,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
#ifndef HAVE_BCG729
{
.rtpname = "G729",
.avcodec_id = AV_CODEC_ID_G729,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "G729a",
.avcodec_id = AV_CODEC_ID_G729,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
#else
{
.rtpname = "G729",
.avcodec_id = -1,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.default_fmtp = "annexb=no",
.packetizer = packetizer_g729,
.bits_per_sample = 1, // 10 ms frame has 80 samples and encodes as (max) 10 bytes = 80 bits
.media_type = MT_AUDIO,
.codec_type = &codec_type_bcg729,
},
{
.rtpname = "G729a",
.avcodec_id = -1,
.clockrate_mult = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.packetizer = packetizer_g729,
.bits_per_sample = 1, // 10 ms frame has 80 samples and encodes as (max) 10 bytes = 80 bits
.media_type = MT_AUDIO,
.codec_type = &codec_type_bcg729,
},
#endif
{
.rtpname = "speex",
.avcodec_id = AV_CODEC_ID_SPEEX,
.default_clockrate = 16000,
.default_channels = 1,
.default_bitrate = 11000,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "GSM",
.avcodec_id = AV_CODEC_ID_GSM,
.default_clockrate = 8000,
.default_channels = 1,
//.default_bitrate = 13200,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "iLBC",
.avcodec_id = AV_CODEC_ID_ILBC,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 30,
.default_fmtp = "mode=30",
//.default_bitrate = 15200,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_ilbc,
.set_enc_options = ilbc_set_enc_options,
.set_dec_options = ilbc_set_dec_options,
},
{
.rtpname = "opus",
.avcodec_id = AV_CODEC_ID_OPUS,
.avcodec_name_enc = "libopus",
.avcodec_name_dec = "libopus",
.default_clockrate = 48000,
.default_channels = 2,
.default_bitrate = 32000,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
.init = opus_init,
.set_enc_options = opus_set_enc_options,
},
{
.rtpname = "vorbis",
.avcodec_id = AV_CODEC_ID_VORBIS,
.avcodec_name_enc = "libvorbis",
.avcodec_name_dec = "libvorbis",
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "ac3",
.avcodec_id = AV_CODEC_ID_AC3,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "eac3",
.avcodec_id = AV_CODEC_ID_EAC3,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "ATRAC3",
.avcodec_id = AV_CODEC_ID_ATRAC3,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "ATRAC-X",
.avcodec_id = AV_CODEC_ID_ATRAC3P,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
#if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 0, 0)
{
.rtpname = "EVRC",
.avcodec_id = AV_CODEC_ID_EVRC,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "EVRC0",
.avcodec_id = AV_CODEC_ID_EVRC,
.default_clockrate = 8000,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "EVRC1",
.avcodec_id = AV_CODEC_ID_EVRC,
.default_clockrate = 8000,
.default_ptime = 20,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
#endif
{
.rtpname = "AMR",
.avcodec_id = AV_CODEC_ID_AMR_NB,
.avcodec_name_enc = "libopencore_amrnb",
.avcodec_name_dec = "libopencore_amrnb",
.default_clockrate = 8000,
.default_channels = 1,
.default_bitrate = 6700,
.default_ptime = 20,
.default_fmtp = "octet-align=1;mode-change-capability=2",
.packetizer = packetizer_amr,
.bits_per_sample = 2, // max is 12200 / 8000 = 1.525 bits per sample, rounded up
.media_type = MT_AUDIO,
.codec_type = &codec_type_amr,
.set_enc_options = amr_set_enc_options,
.set_dec_options = amr_set_dec_options,
.packet_lost = amr_packet_lost,
},
{
.rtpname = "AMR-WB",
.avcodec_id = AV_CODEC_ID_AMR_WB,
.avcodec_name_enc = "libvo_amrwbenc",
.avcodec_name_dec = "libopencore_amrwb",
.default_clockrate = 16000,
.default_channels = 1,
.default_bitrate = 14250,
.default_ptime = 20,
.default_fmtp = "octet-align=1;mode-change-capability=2",
.packetizer = packetizer_amr,
.bits_per_sample = 2, // max is 23850 / 16000 = 1.490625 bits per sample, rounded up
.media_type = MT_AUDIO,
.codec_type = &codec_type_amr,
.set_enc_options = amr_set_enc_options,
.set_dec_options = amr_set_dec_options,
.packet_lost = amr_packet_lost,
},
{
.rtpname = "telephone-event",
.avcodec_id = -1,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.supplemental = 1,
.dtmf = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_fmtp = "0-15",
.format_cmp = format_cmp_ignore,
.codec_type = &codec_type_dtmf,
.support_encoding = 1,
.support_decoding = 1,
},
{
.rtpname = "CN",
.avcodec_id = AV_CODEC_ID_COMFORT_NOISE,
.avcodec_name_enc = "comfortnoise",
.avcodec_name_dec = "comfortnoise",
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.supplemental = 1,
.default_clockrate = 8000,
.default_channels = 1,
.default_ptime = 20,
.format_cmp = format_cmp_ignore,
.codec_type = &codec_type_cn,
},
// for file reading and writing
{
.rtpname = "PCM-S16LE",
.avcodec_id = AV_CODEC_ID_PCM_S16LE,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "PCM-U8",
.avcodec_id = AV_CODEC_ID_PCM_U8,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
{
.rtpname = "MP3",
.avcodec_id = AV_CODEC_ID_MP3,
.packetizer = packetizer_passthrough,
.media_type = MT_AUDIO,
.codec_type = &codec_type_avcodec,
},
};
static GQueue __supplemental_codecs = G_QUEUE_INIT;
const GQueue * const codec_supplemental_codecs = &__supplemental_codecs;
static GHashTable *codecs_ht;
static GHashTable *codecs_ht_by_av;
const codec_def_t *codec_find(const str *name, enum media_type type) {
codec_def_t *ret = g_hash_table_lookup(codecs_ht, name);
if (!ret)
return NULL;
if (type && type != ret->media_type)
return NULL;
return ret;
}
const codec_def_t *codec_find_by_av(enum AVCodecID id) {
return g_hash_table_lookup(codecs_ht_by_av, GINT_TO_POINTER(id));
}
static const char *avc_decoder_init(decoder_t *dec, const str *fmtp, const str *extra_opts) {
AVCodec *codec = dec->def->decoder;
if (!codec)
return "codec not supported";
dec->u.avc.avcctx = avcodec_alloc_context3(codec);
if (!dec->u.avc.avcctx)
return "failed to alloc codec context";
dec->u.avc.avcctx->channels = dec->in_format.channels;
dec->u.avc.avcctx->sample_rate = dec->in_format.clockrate;
if (dec->def->set_dec_options)
dec->def->set_dec_options(dec, fmtp, extra_opts);
int i = avcodec_open2(dec->u.avc.avcctx, codec, NULL);
if (i) {
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Error returned from libav: %s", av_error(i));
return "failed to open codec context";
}
for (const enum AVSampleFormat *sfmt = codec->sample_fmts; sfmt && *sfmt != -1; sfmt++)
cdbg("supported sample format for input codec %s: %s",
codec->name, av_get_sample_fmt_name(*sfmt));
return NULL;
}
decoder_t *decoder_new_fmt(const codec_def_t *def, int clockrate, int channels, int ptime,
const format_t *resample_fmt)
{
return decoder_new_fmtp(def, clockrate, channels, ptime, resample_fmt, NULL, NULL);
}
decoder_t *decoder_new_fmtp(const codec_def_t *def, int clockrate, int channels, int ptime,
const format_t *resample_fmt,
const str *fmtp,
const str *extra_opts)
{
const char *err;
decoder_t *ret = NULL;
err = "codec not supported";
if (!def->codec_type)
goto err;
clockrate *= def->clockrate_mult;
ret = g_slice_alloc0(sizeof(*ret));
ret->def = def;
format_init(&ret->in_format);
ret->in_format.channels = channels;
ret->in_format.clockrate = clockrate;
// output defaults to same as input
ret->out_format = ret->in_format;
if (resample_fmt)
ret->out_format = *resample_fmt;
if (ptime > 0)
ret->ptime = ptime;
else
ret->ptime = def->default_ptime;
err = def->codec_type->decoder_init(ret, fmtp, extra_opts);
if (err)
goto err;
av_init_packet(&ret->u.avc.avpkt);
ret->pts = (uint64_t) -1LL;
ret->rtp_ts = (unsigned long) -1L;
return ret;
err:
if (ret)
decoder_close(ret);
if (err)
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Error creating media decoder for codec %s: %s", def->rtpname, err);
return NULL;
}
static void avc_decoder_close(decoder_t *dec) {
#if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(56, 1, 0)
avcodec_free_context(&dec->u.avc.avcctx);
#else
avcodec_close(dec->u.avc.avcctx);
av_free(dec->u.avc.avcctx);
#endif
}
void decoder_close(decoder_t *dec) {
if (!dec)
return;
/// XXX drain inputs and outputs
if (dec->def && dec->def->codec_type && dec->def->codec_type->decoder_close)
dec->def->codec_type->decoder_close(dec);
resample_shutdown(&dec->resampler);
g_slice_free1(sizeof(*dec), dec);
}
static int avc_decoder_input(decoder_t *dec, const str *data, GQueue *out) {
const char *err;
int av_ret = 0;
dec->u.avc.avpkt.data = (unsigned char *) data->s;
dec->u.avc.avpkt.size = data->len;
dec->u.avc.avpkt.pts = dec->pts;
AVFrame *frame = NULL;
// loop until all input is consumed and all available output has been processed
int keep_going;
do {
keep_going = 0;
int got_frame = 0;
err = "failed to alloc av frame";
frame = av_frame_alloc();
if (!frame)
goto err;
#if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 36, 0)
if (dec->u.avc.avpkt.size) {
av_ret = avcodec_send_packet(dec->u.avc.avcctx, &dec->u.avc.avpkt);
cdbg("send packet ret %i", av_ret);
err = "failed to send packet to avcodec";
if (av_ret == 0) {
// consumed the packet
dec->u.avc.avpkt.size = 0;
keep_going = 1;
}
else {
if (av_ret == AVERROR(EAGAIN))
; // try again after reading output
else
goto err;
}
}
av_ret = avcodec_receive_frame(dec->u.avc.avcctx, frame);
cdbg("receive frame ret %i", av_ret);
err = "failed to receive frame from avcodec";
if (av_ret == 0) {
// got a frame
keep_going = 1;
got_frame = 1;
}
else {
if (av_ret == AVERROR(EAGAIN))
; // maybe needs more input now
else
goto err;
}
#else
// only do this if we have any input left
if (dec->u.avc.avpkt.size == 0)
break;
av_ret = avcodec_decode_audio4(dec->u.avc.avcctx, frame, &got_frame, &dec->u.avc.avpkt);
cdbg("decode frame ret %i, got frame %i", av_ret, got_frame);
err = "failed to decode audio packet";
if (av_ret < 0)
goto err;
if (av_ret > 0) {
// consumed some input
err = "invalid return value";
if (av_ret > dec->u.avc.avpkt.size)
goto err;
dec->u.avc.avpkt.size -= av_ret;
dec->u.avc.avpkt.data += av_ret;
keep_going = 1;
}
if (got_frame)
keep_going = 1;
#endif
if (got_frame) {
cdbg("raw frame from decoder pts %llu samples %u",
(unsigned long long) frame->pts, frame->nb_samples);
#if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(57, 36, 0)
frame->pts = frame->pkt_pts;
#endif
if (G_UNLIKELY(frame->pts == AV_NOPTS_VALUE))
frame->pts = dec->u.avc.avpkt.pts;
dec->u.avc.avpkt.pts += frame->nb_samples;
g_queue_push_tail(out, frame);
frame = NULL;
}
} while (keep_going);
av_frame_free(&frame);
return 0;
err:
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Error decoding media packet: %s", err);
if (av_ret)
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Error returned from libav: %s", av_error(av_ret));
av_frame_free(&frame);
return -1;
}
static int __decoder_input_data(decoder_t *dec, const str *data, unsigned long ts,
int (*callback)(decoder_t *, AVFrame *, void *u1, void *u2), void *u1, void *u2)
{
GQueue frames = G_QUEUE_INIT;
if (G_UNLIKELY(!dec))
return -1;
if (!data && !dec->def->packet_lost)
return 0;
ts *= dec->def->clockrate_mult;
cdbg("%p dec pts %llu rtp_ts %llu incoming ts %lu", dec, (unsigned long long) dec->pts,
(unsigned long long) dec->rtp_ts, (unsigned long) ts);
if (G_UNLIKELY(dec->rtp_ts == (unsigned long) -1L)) {
// initialize pts
dec->pts = 0;
}
else {
// shift pts according to rtp ts shift
u_int64_t shift_ts = ts - dec->rtp_ts;
if ((shift_ts * 1000) / dec->in_format.clockrate > PACKET_TS_RESET_THRES) {
ilog(LOG_DEBUG, "Timestamp discontinuity detected, resetting timestamp from "
"%lu to %lu",
dec->rtp_ts, ts);
// XXX handle lost packets here if timestamps don't line up?
}
else
dec->pts += shift_ts;
}
dec->rtp_ts = ts;
if (data)
dec->def->codec_type->decoder_input(dec, data, &frames);
else
dec->def->packet_lost(dec, &frames);
AVFrame *frame;
int ret = 0;
while ((frame = g_queue_pop_head(&frames))) {
AVFrame *rsmp_frame = resample_frame(&dec->resampler, frame, &dec->out_format);
if (!rsmp_frame) {
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Resampling failed");
ret = -1;
}
else {
if (callback(dec, rsmp_frame, u1, u2))
ret = -1;
}
av_frame_free(&frame);
}
return ret;
}
int decoder_input_data(decoder_t *dec, const str *data, unsigned long ts,
int (*callback)(decoder_t *, AVFrame *, void *u1, void *u2), void *u1, void *u2)
{
if (!data || !data->s || !data->len)
return 0;
return __decoder_input_data(dec, data, ts, callback, u1, u2);
}
int decoder_lost_packet(decoder_t *dec, unsigned long ts,
int (*callback)(decoder_t *, AVFrame *, void *u1, void *u2), void *u1, void *u2)
{
return __decoder_input_data(dec, NULL, ts, callback, u1, u2);
}
static void avlog_ilog(void *ptr, int loglevel, const char *fmt, va_list ap) {
char *msg;
if (vasprintf(&msg, fmt, ap) <= 0)
ilogs(ffmpeg, LOG_ERR | LOG_FLAG_LIMIT, "av_log message dropped");
else {
#ifdef AV_LOG_PANIC
// translate AV_LOG_ constants to LOG_ levels
if (loglevel >= AV_LOG_VERBOSE)
loglevel = LOG_DEBUG;
else if (loglevel >= AV_LOG_INFO)
loglevel = LOG_NOTICE;
else if (loglevel >= AV_LOG_WARNING)
loglevel = LOG_WARNING;
else if (loglevel >= AV_LOG_ERROR)
loglevel = LOG_ERROR;
else if (loglevel >= AV_LOG_FATAL)
loglevel = LOG_CRIT;
else
loglevel = LOG_ALERT;
#else
// defuse avlog log levels to be either DEBUG or ERR
if (loglevel <= LOG_ERR)
loglevel = LOG_ERR;
else
loglevel = LOG_DEBUG;
#endif
ilogs(ffmpeg, loglevel | LOG_FLAG_LIMIT, "av_log: %s", msg);
free(msg);
}
}
static void avc_def_init(codec_def_t *def) {
// look up AVCodec structs
if (def->avcodec_name_enc)
def->encoder = avcodec_find_encoder_by_name(def->avcodec_name_enc);
if (def->avcodec_name_dec)
def->decoder = avcodec_find_decoder_by_name(def->avcodec_name_dec);
if (def->avcodec_id >= 0) {
if (!def->encoder)
def->encoder = avcodec_find_encoder(def->avcodec_id);
if (!def->decoder)
def->decoder = avcodec_find_decoder(def->avcodec_id);
}
// check if we have support if we are supposed to
if (def->avcodec_name_enc || def->avcodec_id >= 0) {
if (def->encoder)
def->support_encoding = 1;
}
if (def->avcodec_name_dec || def->avcodec_id >= 0) {
if (def->decoder)
def->support_decoding = 1;
}
}
void codeclib_free(void) {
g_hash_table_destroy(codecs_ht);
g_hash_table_destroy(codecs_ht_by_av);
avformat_network_deinit();
}
void codeclib_init(int print) {
#if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58, 9, 100)
av_register_all();
avcodec_register_all();
avfilter_register_all();
#endif
avformat_network_init();
av_log_set_callback(avlog_ilog);
codecs_ht = g_hash_table_new(str_case_hash, str_case_equal);
codecs_ht_by_av = g_hash_table_new(g_direct_hash, g_direct_equal);
for (int i = 0; i < G_N_ELEMENTS(__codec_defs); i++) {
// add to hash table
codec_def_t *def = &__codec_defs[i];
str_init(&def->rtpname_str, (char *) def->rtpname);
assert(g_hash_table_lookup(codecs_ht, &def->rtpname_str) == NULL);
g_hash_table_insert(codecs_ht, &def->rtpname_str, def);
if (def->avcodec_id >= 0) {
if (g_hash_table_lookup(codecs_ht_by_av, GINT_TO_POINTER(def->avcodec_id)) == NULL)
g_hash_table_insert(codecs_ht_by_av, GINT_TO_POINTER(def->avcodec_id), def);
}
// init undefined member vars
if (!def->clockrate_mult)
def->clockrate_mult = 1;
if (!def->default_ptime)
def->default_ptime = -1;
if (!def->default_clockrate)
def->default_clockrate = -1;
if (!def->default_channels)
def->default_channels = -1;
// init RFC-related info
const struct rtp_payload_type *pt = rtp_get_rfc_codec(&def->rtpname_str);
if (pt)
def->rfc_payload_type = pt->payload_type;
else
def->rfc_payload_type = -1;
if (def->codec_type && def->codec_type->def_init)
def->codec_type->def_init(def);
if (print) {
if (def->support_encoding && def->support_decoding) {
if (def->default_channels > 0 && def->default_clockrate >= 0)
printf("%20s: fully supported\n", def->rtpname);
else
printf("%20s: codec supported but lacks RTP definition\n", def->rtpname);
}
else if (def->support_decoding)
printf("%20s: supported for decoding only\n", def->rtpname);
else if (def->support_encoding)
printf("%20s: supported for encoding only\n", def->rtpname);
else
printf("%20s: not supported\n", def->rtpname);
}
else {
if (!def->support_encoding && !def->support_decoding)
ilog(LOG_DEBUG, "Codec %s is not supported by codec library",
def->rtpname);
else if (!def->support_encoding) {
ilog(LOG_DEBUG, "Codec %s is only supported for decoding "
"by codec library", def->rtpname);
}
else if (!def->support_decoding)
ilog(LOG_DEBUG, "Codec %s is only supported for encoding "
"by codec library", def->rtpname);
}
if (def->supplemental)
g_queue_push_tail(&__supplemental_codecs, def);
}
}
static int ptr_cmp(const void *a, const void *b, void *dummy) {
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
void __packet_sequencer_init(packet_sequencer_t *ps, GDestroyNotify ffunc) {
ps->packets = g_tree_new_full(ptr_cmp, NULL, NULL, ffunc);
ps->seq = -1;
}
void packet_sequencer_destroy(packet_sequencer_t *ps) {
if (ps->packets)
g_tree_destroy(ps->packets);
ps->packets = NULL;
}
struct tree_searcher {
int find_seq,
found_seq;
};
static int packet_tree_search(const void *testseq_p, const void *ts_p) {
struct tree_searcher *ts = (void *) ts_p;
int testseq = GPOINTER_TO_INT(testseq_p);
// called as a binary search test function. we're looking for the lowest
// seq number that is higher than find_seq. if our test number is too low,
// we proceed with higher numbers. if it's too high, we proceed to the lower
// numbers, but remember the lowest we've seen along that path.
if (G_UNLIKELY(testseq == ts->find_seq)) {
// we've struck gold
ts->found_seq = testseq;
return 0;
}
if (testseq < ts->find_seq)
return 1;
// testseq > ts->find_seq
if (ts->found_seq == -1 || testseq < ts->found_seq)
ts->found_seq = testseq;
return -1;
}
// caller must take care of locking
static void *__packet_sequencer_next_packet(packet_sequencer_t *ps, int num_wait) {
// see if we have a packet with the correct seq nr in the queue
seq_packet_t *packet = g_tree_lookup(ps->packets, GINT_TO_POINTER(ps->seq));
if (G_LIKELY(packet != NULL)) {
cdbg("returning in-sequence packet (seq %i)", ps->seq);
goto out;
}
// why not? do we have anything? (we should)
int nnodes = g_tree_nnodes(ps->packets);
if (G_UNLIKELY(nnodes == 0)) {
cdbg("packet queue empty");
return NULL;
}
if (G_LIKELY(nnodes < num_wait)) {
cdbg("only %i packets in queue - waiting for more", nnodes);
return NULL; // need to wait for more
}
// packet was probably lost. search for the next highest seq
struct tree_searcher ts = { .find_seq = ps->seq + 1, .found_seq = -1 };
packet = g_tree_search(ps->packets, packet_tree_search, &ts);
if (packet) {
// bullseye
cdbg("lost packet - returning packet with next seq %i", packet->seq);
goto out;
}
if (G_UNLIKELY(ts.found_seq == -1)) {
// didn't find anything. seq must have wrapped around. retry
// starting from zero
ts.find_seq = 0;
packet = g_tree_search(ps->packets, packet_tree_search, &ts);
if (packet) {
cdbg("lost packet - returning packet with next seq %i (after wrap)", packet->seq);
goto out;
}
if (G_UNLIKELY(ts.found_seq == -1))
abort();
}
// pull out the packet we found
packet = g_tree_lookup(ps->packets, GINT_TO_POINTER(ts.found_seq));
if (G_UNLIKELY(packet == NULL))
abort();
cdbg("lost multiple packets - returning packet with next highest seq %i", packet->seq);
out:
;
u_int16_t l = packet->seq - ps->seq;
ps->lost_count += l;
g_tree_steal(ps->packets, GINT_TO_POINTER(packet->seq));
ps->seq = (packet->seq + 1) & 0xffff;
if (packet->seq < ps->ext_seq)
ps->roc++;
ps->ext_seq = ps->roc << 16 | packet->seq;
return packet;
}
void *packet_sequencer_next_packet(packet_sequencer_t *ps) {
return __packet_sequencer_next_packet(ps, 10); // arbitrary value
}
void *packet_sequencer_force_next_packet(packet_sequencer_t *ps) {
return __packet_sequencer_next_packet(ps, 0);
}
int packet_sequencer_next_ok(packet_sequencer_t *ps) {
if (g_tree_lookup(ps->packets, GINT_TO_POINTER(ps->seq)))
return 1;
return 0;
}
int packet_sequencer_insert(packet_sequencer_t *ps, seq_packet_t *p) {
int ret = 0;
// check seq for dupes
if (G_UNLIKELY(ps->seq == -1)) {
// first packet we see
ps->seq = p->seq;
goto seq_ok;
}
int diff = p->seq - ps->seq;
// early packet: p->seq = 200, ps->seq = 150, diff = 50
if (G_LIKELY(diff >= 0 && diff < PACKET_SEQ_DUPE_THRES))
goto seq_ok;
// early packet with wrap-around: p->seq = 20, ps->seq = 65530, diff = -65510
if (diff < (-0xffff + PACKET_SEQ_DUPE_THRES))
goto seq_ok;
// recent duplicate: p->seq = 1000, ps->seq = 1080, diff = -80
if (diff < 0 && diff > -PACKET_SEQ_DUPE_THRES)
return -1;
// recent duplicate after wrap-around: p->seq = 65530, ps->seq = 30, diff = 65500
if (diff > (0xffff - PACKET_SEQ_DUPE_THRES))
return -1;
// everything else we consider a seq reset
ilog(LOG_DEBUG, "Seq reset detected: expected seq %i, received seq %i", ps->seq, p->seq);
ps->seq = p->seq;
ret = 1;
// seq ok - fall through
g_tree_clear(ps->packets);
seq_ok:
if (g_tree_lookup(ps->packets, GINT_TO_POINTER(p->seq)))
return -1;
g_tree_insert(ps->packets, GINT_TO_POINTER(p->seq), p);
return ret;
}
encoder_t *encoder_new(void) {
encoder_t *ret = g_slice_alloc0(sizeof(*ret));
format_init(&ret->requested_format);
format_init(&ret->actual_format);
return ret;
}
static const char *avc_encoder_init(encoder_t *enc, const str *fmtp, const str *extra_opts) {
enc->u.avc.codec = enc->def->encoder;
if (!enc->u.avc.codec)
return "output codec not found";
enc->u.avc.avcctx = avcodec_alloc_context3(enc->u.avc.codec);
if (!enc->u.avc.avcctx)
return "failed to alloc codec context";
enc->actual_format = enc->requested_format;
enc->actual_format.format = -1;
for (const enum AVSampleFormat *sfmt = enc->u.avc.codec->sample_fmts; sfmt && *sfmt != -1; sfmt++) {
cdbg("supported sample format for output codec %s: %s",
enc->u.avc.codec->name, av_get_sample_fmt_name(*sfmt));
if (*sfmt == enc->requested_format.format)
enc->actual_format.format = *sfmt;
}
if (enc->actual_format.format == -1 && enc->u.avc.codec->sample_fmts)
enc->actual_format.format = enc->u.avc.codec->sample_fmts[0];
cdbg("using output sample format %s for codec %s",
av_get_sample_fmt_name(enc->actual_format.format), enc->u.avc.codec->name);
enc->u.avc.avcctx->channels = enc->actual_format.channels;
enc->u.avc.avcctx->channel_layout = av_get_default_channel_layout(enc->actual_format.channels);
enc->u.avc.avcctx->sample_rate = enc->actual_format.clockrate;
enc->u.avc.avcctx->sample_fmt = enc->actual_format.format;
enc->u.avc.avcctx->time_base = (AVRational){1,enc->actual_format.clockrate};
enc->u.avc.avcctx->bit_rate = enc->bitrate;
enc->samples_per_frame = enc->actual_format.clockrate * enc->ptime / 1000;
if (enc->u.avc.avcctx->frame_size)
enc->samples_per_frame = enc->u.avc.avcctx->frame_size;
enc->samples_per_packet = enc->samples_per_frame;
if (enc->def->set_enc_options)
enc->def->set_enc_options(enc, fmtp, extra_opts);
int i = avcodec_open2(enc->u.avc.avcctx, enc->u.avc.codec, NULL);
if (i) {
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Error returned from libav: %s", av_error(i));
return "failed to open output context";
}
return NULL;
}
int encoder_config(encoder_t *enc, const codec_def_t *def, int bitrate, int ptime,
const format_t *requested_format, format_t *actual_format)
{
return encoder_config_fmtp(enc, def, bitrate, ptime, requested_format, actual_format, NULL, NULL);
}
int encoder_config_fmtp(encoder_t *enc, const codec_def_t *def, int bitrate, int ptime,
const format_t *requested_format, format_t *actual_format, const str *fmtp,
const str *extra_opts)
{
const char *err;
err = "codec not supported";
if (!def->codec_type)
goto err;
// anything to do?
if (G_LIKELY(format_eq(requested_format, &enc->requested_format)))
goto done;
encoder_close(enc);
enc->requested_format = *requested_format;
enc->def = def;
enc->ptime = ptime / def->clockrate_mult;
enc->bitrate = bitrate;
err = def->codec_type->encoder_init ? def->codec_type->encoder_init(enc, fmtp, extra_opts) : 0;
if (err)
goto err;
av_init_packet(&enc->avpkt);
// output frame and fifo
enc->frame = av_frame_alloc();
if (enc->actual_format.format != -1 && enc->actual_format.clockrate > 0) {
enc->frame->nb_samples = enc->samples_per_frame ? : 256;
enc->frame->format = enc->actual_format.format;
enc->frame->sample_rate = enc->actual_format.clockrate;
enc->frame->channel_layout = av_get_default_channel_layout(enc->actual_format.channels);
//if (!enc->frame->channel_layout)
//enc->frame->channel_layout = av_get_default_channel_layout(enc->u.avc.avcctx->channels);
if (av_frame_get_buffer(enc->frame, 0) < 0)
abort();
enc->fifo = av_audio_fifo_alloc(enc->frame->format, enc->actual_format.channels,
enc->frame->nb_samples);
ilog(LOG_DEBUG, "Initialized encoder with frame size %u samples", enc->frame->nb_samples);
}
else
ilog(LOG_DEBUG, "Initialized encoder without frame buffer");
done:
if (actual_format)
*actual_format = enc->actual_format;
return 0;
err:
encoder_close(enc);
ilog(LOG_ERR, "Error configuring media output for codec %s: %s", def->rtpname, err);
return -1;
}
static void avc_encoder_close(encoder_t *enc) {
if (enc->u.avc.avcctx) {
avcodec_close(enc->u.avc.avcctx);
avcodec_free_context(&enc->u.avc.avcctx);
}
enc->u.avc.avcctx = NULL;
enc->u.avc.codec = NULL;
}
void encoder_close(encoder_t *enc) {
if (!enc)
return;
if (enc->def && enc->def->codec_type && enc->def->codec_type->encoder_close)
enc->def->codec_type->encoder_close(enc);
format_init(&enc->requested_format);
format_init(&enc->actual_format);
av_audio_fifo_free(enc->fifo);
av_frame_free(&enc->frame);
enc->mux_dts = 0;
enc->fifo = NULL;
enc->fifo_pts = 0;
}
void encoder_free(encoder_t *enc) {
encoder_close(enc);
g_slice_free1(sizeof(*enc), enc);
}
static int avc_encoder_input(encoder_t *enc, AVFrame **frame) {
int keep_going = 0;
int got_packet = 0;
int av_ret = 0;
if (!enc->u.avc.avcctx)
return -1;
#if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(57, 36, 0)
if (*frame) {
av_ret = avcodec_send_frame(enc->u.avc.avcctx, *frame);
cdbg("send frame ret %i", av_ret);
if (av_ret == 0) {
// consumed
*frame = NULL;
keep_going = 1;
}
else {
if (av_ret == AVERROR(EAGAIN))
; // check output and maybe try again
else
goto err;
}
}
av_ret = avcodec_receive_packet(enc->u.avc.avcctx, &enc->avpkt);
cdbg("receive packet ret %i", av_ret);
if (av_ret == 0) {
// got some data
keep_going = 1;
got_packet = 1;
}
else {
if (av_ret == AVERROR(EAGAIN))
; // try again if there's still more input
else
goto err;
}
#else
if (!*frame)
return 0;
av_ret = avcodec_encode_audio2(enc->u.avc.avcctx, &enc->avpkt, *frame, &got_packet);
cdbg("encode frame ret %i, got packet %i", av_ret, got_packet);
if (av_ret == 0)
*frame = NULL; // consumed
else
goto err;
if (got_packet)
keep_going = 1;
#endif
if (!got_packet)
return keep_going;
cdbg("output avpkt size is %i", (int) enc->avpkt.size);
cdbg("output pkt pts/dts is %li/%li", (long) enc->avpkt.pts,
(long) enc->avpkt.dts);
// the encoder may return frames with the same dts multiple consecutive times.
// the muxer may not like this, so ensure monotonically increasing dts.
if (enc->mux_dts > enc->avpkt.dts)
enc->avpkt.dts = enc->mux_dts;
if (enc->avpkt.pts < enc->avpkt.dts)
enc->avpkt.pts = enc->avpkt.dts;
return keep_going;
err:
if (av_ret)
ilog(LOG_ERR | LOG_FLAG_LIMIT, "Error returned from libav: %s", av_error(av_ret));
return -1;
}
int encoder_input_data(encoder_t *enc, AVFrame *frame,
int (*callback)(encoder_t *, void *u1, void *u2), void *u1, void *u2)
{
enc->avpkt.size = 0;
while (1) {
if (!enc->def->codec_type->encoder_input)
break;
int ret = enc->def->codec_type->encoder_input(enc, &frame);
if (ret < 0)
return -1;
if (enc->avpkt.size) {
if (enc->def->codec_type->encoder_got_packet)
enc->def->codec_type->encoder_got_packet(enc);
callback(enc, u1, u2);
enc->mux_dts = enc->avpkt.dts + 1; // min next expected dts
av_packet_unref(&enc->avpkt);
enc->avpkt.size = 0;
}
if (ret == 0)
break;
}
return 0;
}
static int encoder_fifo_flush(encoder_t *enc,
int (*callback)(encoder_t *, void *u1, void *u2), void *u1, void *u2)
{
while (av_audio_fifo_size(enc->fifo) >= enc->frame->nb_samples) {
if (av_audio_fifo_read(enc->fifo, (void **) enc->frame->data,
enc->frame->nb_samples) <= 0)
abort();
cdbg("output fifo pts %lu",(unsigned long) enc->fifo_pts);
enc->frame->pts = enc->fifo_pts;
encoder_input_data(enc, enc->frame, callback, u1, u2);
enc->fifo_pts += enc->frame->nb_samples;
}
return 0;
}
int encoder_input_fifo(encoder_t *enc, AVFrame *frame,
int (*callback)(encoder_t *, void *u1, void *u2), void *u1, void *u2)
{
if (av_audio_fifo_write(enc->fifo, (void **) frame->extended_data, frame->nb_samples) < 0)
return -1;
return encoder_fifo_flush(enc, callback, u1, u2);
}
static int packetizer_passthrough(AVPacket *pkt, GString *buf, str *output, encoder_t *enc) {
if (!pkt)
return -1;
assert(output->len >= pkt->size);
output->len = pkt->size;
memcpy(output->s, pkt->data, pkt->size);
return 0;
}
// returns: -1 = not enough data, nothing returned; 0 = returned a packet;
// 1 = returned a packet and there's more
static int packetizer_samplestream(AVPacket *pkt, GString *buf, str *input_output, encoder_t *enc) {
// avoid moving buffers around if possible:
// most common case: new input packet has just enough (or more) data as what we need
if (G_LIKELY(pkt && buf->len == 0 && pkt->size >= input_output->len)) {
memcpy(input_output->s, pkt->data, input_output->len);
if (pkt->size > input_output->len) // any leftovers?
g_string_append_len(buf, (char *) pkt->data + input_output->len,
pkt->size - input_output->len);
return buf->len >= input_output->len ? 1 : 0;
}
// we have to move data around. append input packet to buffer if we have one
if (pkt)
g_string_append_len(buf, (char *) pkt->data, pkt->size);
// do we have enough?
if (buf->len < input_output->len)
return -1;
// copy requested data into provided output buffer and remove from interim buffer
memcpy(input_output->s, buf->str, input_output->len);
g_string_erase(buf, 0, input_output->len);
return buf->len >= input_output->len ? 1 : 0;
}
static int codeclib_set_av_opt_int(encoder_t *enc, const char *opt, int64_t val) {
ilog(LOG_DEBUG, "Setting ffmpeg '%s' option for '%s' to %" PRId64,
opt, enc->def->rtpname, val);
int ret = av_opt_set_int(enc->u.avc.avcctx, opt, val, AV_OPT_SEARCH_CHILDREN);
if (!ret)
return 0;
ilog(LOG_WARN, "Failed to set ffmpeg '%s' option for codec '%s' to %" PRId64 ": %s",
opt, enc->def->rtpname, val, av_error(ret));
return -1;
}
static int codeclib_set_av_opt_intstr(encoder_t *enc, const char *opt, str *val) {
int i = val ? str_to_i(val, -1) : -1;
if (i == -1) {
ilog(LOG_WARN, "Failed to parse '" STR_FORMAT "' as integer value for ffmpeg option '%s'",
STR_FMT0(val), opt);
return -1;
}
return codeclib_set_av_opt_int(enc, opt, i);
}
static void opus_init(struct rtp_payload_type *pt) {
if (pt->clock_rate != 48000) {
ilog(LOG_WARN, "Opus is only supported with a clock rate of 48 kHz");
pt->clock_rate = 48000;
}
switch (pt->ptime) {
case 5:
case 10:
case 20:
case 40:
case 60:
break;
default:
;
int np;
if (pt->ptime < 10)
np = 5;
else if (pt->ptime < 20)
np = 10;
else if (pt->ptime < 40)
np = 20;
else if (pt->ptime < 60)
np = 40;
else
np = 60;
ilog(LOG_INFO, "Opus doesn't support a ptime of %i ms; using %i ms instead",
pt->ptime, np);
pt->ptime = np;
break;
}
if (pt->bitrate) {
if (pt->bitrate < 6000) {
ilog(LOG_DEBUG, "Opus bitrate %i bps too small, assuming %i kbit/s",
pt->bitrate, pt->bitrate);
pt->bitrate *= 1000;
}
return;
}
if (pt->channels == 1)
pt->bitrate = 24000;
else if (pt->channels == 2)
pt->bitrate = 32000;
else
pt->bitrate = 64000;
ilog(LOG_DEBUG, "Using default bitrate of %i bps for %i-channel Opus", pt->bitrate, pt->channels);
}
static void opus_set_enc_options(encoder_t *enc, const str *fmtp, const str *codec_opts) {
if (enc->ptime)
codeclib_set_av_opt_int(enc, "frame_duration", enc->ptime);
// XXX additional opus options
}
static int ilbc_mode(int ptime, const str *fmtp, const char *direction) {
int mode = 0;
if (fmtp) {
if (!str_cmp(fmtp, "mode=20")) {
mode = 20;
ilog(LOG_DEBUG, "Setting iLBC %s mode to 20 ms based on fmtp", direction);
}
else if (!str_cmp(fmtp, "mode=30")) {
mode = 30;
ilog(LOG_DEBUG, "Setting iLBC %s mode to 30 ms based on fmtp", direction);
}
}
if (!mode) {
switch (ptime) {
case 20:
case 40:
case 60:
case 80:
case 100:
case 120:
mode = 20;
ilog(LOG_DEBUG, "Setting iLBC %s mode to 20 ms based on ptime %i",
direction, ptime);
break;
case 30:
case 90:
mode = 30;
ilog(LOG_DEBUG, "Setting iLBC %s mode to 30 ms based on ptime %i",
direction, ptime);
break;
}
}
if (!mode) {
mode = 20;
ilog(LOG_WARNING, "No iLBC %s mode specified, setting to 20 ms", direction);
}
return mode;
}
static void ilbc_set_enc_options(encoder_t *enc, const str *fmtp, const str *codec_opts) {
int mode = ilbc_mode(enc->ptime, fmtp, "encoder");
codeclib_set_av_opt_int(enc, "mode", mode);
}
static void ilbc_set_dec_options(decoder_t *dec, const str *fmtp, const str *codec_opts) {
int mode = ilbc_mode(dec->ptime, fmtp, "decoder");
if (mode == 20)
dec->u.avc.avcctx->block_align = 38;
else if (mode == 30)
dec->u.avc.avcctx->block_align = 50;
else
ilog(LOG_WARN, "Unsupported iLBC mode %i", mode);
}
static int ilbc_decoder_input(decoder_t *dec, const str *data, GQueue *out) {
int mode = 0, block_align = 0;
static const str mode_20 = STR_CONST_INIT("mode=20");
static const str mode_30 = STR_CONST_INIT("mode=30");
const str *fmtp;
if (data->len % 50 == 0) {
mode = 30;
block_align = 50;
fmtp = &mode_30;
}
else if (data->len % 38 == 0) {
mode = 20;
block_align = 38;
fmtp = &mode_20;
}
else
ilog(LOG_WARNING | LOG_FLAG_LIMIT, "iLBC received %i bytes packet, does not match "
"one of the block sizes", (int) data->len);
if (block_align && dec->u.avc.avcctx->block_align != block_align) {
ilog(LOG_INFO | LOG_FLAG_LIMIT, "iLBC decoder set to %i bytes blocks, but received packet "
"of %i bytes, therefore resetting decoder and switching to %i bytes "
"block mode (%i ms mode)",
(int) dec->u.avc.avcctx->block_align, (int) data->len, block_align, mode);
avc_decoder_close(dec);
avc_decoder_init(dec, fmtp, NULL);
}
return avc_decoder_input(dec, data, out);
}
static void codeclib_key_value_parse(const str *instr, int need_value,
void (*cb)(str *key, str *value, void *data), void *data)
{
if (!instr || !instr->s)
return;
// semicolon-separated key=value
str s = *instr;
str key, value;
while (str_token_sep(&value, &s, ';') == 0) {
if (str_token(&key, &value, '=')) {
if (need_value)
continue;
value = STR_NULL;
}
// truncate whitespace
while (key.len && key.s[0] == ' ')
str_shift(&key, 1);
while (key.len && key.s[key.len - 1] == ' ')
key.len--;
while (value.len && value.s[0] == ' ')
str_shift(&value, 1);
while (value.len && value.s[value.len - 1] == ' ')
value.len--;
if (key.len == 0)
continue;
cb(&key, &value, data);
}
}
const static unsigned int amr_bitrates[AMR_FT_TYPES] = {
4750, // 0
5150, // 1
5900, // 2
6700, // 3
7400, // 4
7950, // 5
10200, // 6
12200, // 7
0, // comfort noise // 8
0, // comfort noise // 9
0, // comfort noise // 10
0, // comfort noise // 11
0, // invalid // 12
0, // invalid // 13
};
const static unsigned int amr_bits_per_frame[AMR_FT_TYPES] = {
95, // 4.75 kbit/s // 0
103, // 5.15 kbit/s // 1
118, // 5.90 kbit/s // 2
134, // 6.70 kbit/s // 3
148, // 7.40 kbit/s // 4
159, // 7.95 kbit/s // 5
204, // 10.2 kbit/s // 6
244, // 12.2 kbit/s // 7
40, // comfort noise // 8
40, // comfort noise // 9
40, // comfort noise // 10
40, // comfort noise // 11
0, // invalid // 12
0, // invalid // 13
};
const static unsigned int amr_wb_bitrates[AMR_FT_TYPES] = {
6600, // 0
8850, // 1
12650, // 2
14250, // 3
15850, // 4
18250, // 5
19850, // 6
23050, // 7
23850, // 8
0, // comfort noise // 9
0, // invalid // 10
0, // invalid // 11
0, // invalid // 12
0, // invalid // 13
};
const static unsigned int amr_wb_bits_per_frame[AMR_FT_TYPES] = {
132, // 6.60 kbit/s // 0
177, // 8.85 kbit/s // 1
253, // 12.65 kbit/s // 2
285, // 14.25 kbit/s // 3
317, // 15.85 kbit/s // 4
365, // 18.25 kbit/s // 5
397, // 19.85 kbit/s // 6
461, // 23.05 kbit/s // 7
477, // 23.85 kbit/s // 8
40, // comfort noise // 9
0, // invalid // 10
0, // invalid // 11
0, // invalid // 12
0, // invalid // 13
};
static void amr_set_encdec_options_cb(str *key, str *token, void *data) {
codec_options_t *opts = data;
if (!str_cmp(key, "octet-align")) {
if (token->len == 1 && token->s[0] == '1')
opts->amr.octet_aligned = 1;
}
else if (!str_cmp(key, "crc")) {
if (token->len == 1 && token->s[0] == '1') {
opts->amr.octet_aligned = 1;
opts->amr.crc = 1;
}
}
else if (!str_cmp(key, "robust-sorting")) {
if (token->len == 1 && token->s[0] == '1') {
opts->amr.octet_aligned = 1;
opts->amr.robust_sorting = 1;
}
}
else if (!str_cmp(key, "interleaving")) {
opts->amr.octet_aligned = 1;
opts->amr.interleaving = str_to_i(token, 0);
}
else if (!str_cmp(key, "mode-set")) {
str mode;
while (str_token_sep(&mode, token, ',') == 0) {
int m = str_to_i(&mode, -1);
if (m < 0 || m >= AMR_FT_TYPES)
continue;
opts->amr.mode_set |= (1 << m);
}
}
else if (!str_cmp(key, "mode-change-period"))
opts->amr.mode_change_period = str_to_i(token, 0);
else if (!str_cmp(key, "mode-change-neighbor")) {
if (token->len == 1 && token->s[0] == '1')
opts->amr.mode_change_neighbor = 1;
}
}
static void amr_set_encdec_options(codec_options_t *opts, const str *fmtp, const codec_def_t *def) {
if (!strcmp(def->rtpname, "AMR")) {
opts->amr.bits_per_frame = amr_bits_per_frame;
opts->amr.bitrates = amr_bitrates;
}
else {
opts->amr.bits_per_frame = amr_wb_bits_per_frame;
opts->amr.bitrates = amr_wb_bitrates;
}
codeclib_key_value_parse(fmtp, 1, amr_set_encdec_options_cb, opts);
}
static void amr_set_dec_codec_options(str *key, str *value, void *data) {
decoder_t *dec = data;
if (!str_cmp(key, "CMR-interval"))
dec->codec_options.amr.cmr_interval = str_to_i(value, 0);
else if (!str_cmp(key, "mode-change-interval"))
dec->codec_options.amr.mode_change_interval = str_to_i(value, 0);
}
static void amr_set_enc_codec_options(str *key, str *value, void *data) {
encoder_t *enc = data;
if (!str_cmp(key, "CMR-interval"))
; // not an encoder option
else if (!str_cmp(key, "mode-change-interval"))
; // not an encoder option
else {
// our string might not be null terminated
char *s = g_strdup_printf(STR_FORMAT, STR_FMT(key));
codeclib_set_av_opt_intstr(enc, s, value);
g_free(s);
}
}
static void amr_set_enc_options(encoder_t *enc, const str *fmtp, const str *codec_opts) {
amr_set_encdec_options(&enc->codec_options, fmtp, enc->def);
codeclib_key_value_parse(codec_opts, 1, amr_set_enc_codec_options, enc);
// if a mode-set was given, pick the highest supported bitrate
if (enc->codec_options.amr.mode_set) {
int max_bitrate = enc->u.avc.avcctx->bit_rate;
int use_bitrate = 0;
for (int i = 0; i < AMR_FT_TYPES; i++) {
if (!(enc->codec_options.amr.mode_set & (1 << i)))
continue;
unsigned int br = enc->codec_options.amr.bitrates[i];
// we depend on the list being in ascending order, with
// invalid modes at the end
if (!br) // end of list
break;
if (br > max_bitrate && use_bitrate) // done
break;
use_bitrate = br;
}
if (!use_bitrate)
ilog(LOG_WARN, "Unable to determine a valid bitrate from %s mode-set, using default",
enc->def->rtpname);
else {
ilog(LOG_DEBUG, "Using %i as initial %s bitrate based on mode-set",
use_bitrate, enc->def->rtpname);
enc->u.avc.avcctx->bit_rate = use_bitrate;
}
}
}
static void amr_set_dec_options(decoder_t *dec, const str *fmtp, const str *codec_opts) {
amr_set_encdec_options(&dec->codec_options, fmtp, dec->def);
codeclib_key_value_parse(codec_opts, 1, amr_set_dec_codec_options, dec);
}
static void amr_bitrate_tracker(decoder_t *dec, unsigned int ft) {
if (dec->codec_options.amr.cmr_interval <= 0)
return;
if (dec->u.avc.u.amr.tracker_end.tv_sec
&& timeval_cmp(&dec->u.avc.u.amr.tracker_end, &rtpe_now) >= 0) {
// analyse the data we gathered
int next_highest = -1;
int lowest_used = -1;
for (int i = 0; i < AMR_FT_TYPES; i++) {
unsigned int br = dec->codec_options.amr.bitrates[i];
if (!br)
break; // end of list
// ignore restricted modes
if (dec->codec_options.amr.mode_set) {
if (!(dec->codec_options.amr.mode_set & (1 << i)))
continue;
}
// would this be a "next step up" mode?
if (next_highest == -1)
next_highest = i;
// did we see any frames?
if (!dec->u.avc.u.amr.bitrate_tracker[i])
continue;
next_highest = -1;
lowest_used = i;
}
if (lowest_used != -1 && next_highest != -1) {
// we can request a switch up
ilog(LOG_DEBUG, "Sending %s CMR to request upping bitrate to %u",
dec->def->rtpname, dec->codec_options.amr.bitrates[next_highest]);
decoder_event(dec, CE_AMR_SEND_CMR, GINT_TO_POINTER(next_highest));
}
// and reset tracker
ZERO(dec->u.avc.u.amr.tracker_end);
}
if (!dec->u.avc.u.amr.tracker_end.tv_sec) {
// init
ZERO(dec->u.avc.u.amr.bitrate_tracker);
dec->u.avc.u.amr.tracker_end = rtpe_now;
timeval_add_usec(&dec->u.avc.u.amr.tracker_end, dec->codec_options.amr.cmr_interval * 1000);
}
dec->u.avc.u.amr.bitrate_tracker[ft]++;
}
static int amr_decoder_input(decoder_t *dec, const str *data, GQueue *out) {
const char *err = NULL;
if (!data || !data->s)
goto err;
bitstr d;
bitstr_init(&d, data);
GQueue toc = G_QUEUE_INIT;
unsigned int ill = 0, ilp = 0;
unsigned char cmr_chr[2];
str cmr = STR_CONST_INIT_BUF(cmr_chr);
err = "no CMR";
if (bitstr_shift_ret(&d, 4, &cmr))
goto err;
unsigned int cmr_int = cmr_chr[0] >> 4;
if (cmr_int != 15) {
decoder_event(dec, CE_AMR_CMR_RECV, GUINT_TO_POINTER(cmr_int));
dec->u.avc.u.amr.last_cmr = rtpe_now;
}
else if (dec->codec_options.amr.mode_change_interval) {
// no CMR, check if we're due to do our own mode change
if (!dec->u.avc.u.amr.last_cmr.tv_sec) // start tracking now
dec->u.avc.u.amr.last_cmr = rtpe_now;
else if (timeval_diff(&rtpe_now, &dec->u.avc.u.amr.last_cmr)
>= dec->codec_options.amr.mode_change_interval * 1000) {
// switch up if we can
decoder_event(dec, CE_AMR_CMR_RECV, GUINT_TO_POINTER(0xffff));
dec->u.avc.u.amr.last_cmr = rtpe_now;
}
}
if (dec->codec_options.amr.octet_aligned) {
if (bitstr_shift(&d, 4))
goto err;
if (dec->codec_options.amr.interleaving) {
unsigned char ill_ilp_chr[2];
str ill_ilp = STR_CONST_INIT_BUF(ill_ilp_chr);
err = "no ILL/ILP";
if (bitstr_shift_ret(&d, 8, &ill_ilp))
goto err;
ill = ill_ilp_chr[0] >> 4;
ilp = ill_ilp_chr[0] & 0xf;
}
}
err = "ILP > ILL";
if (ilp > ill)
goto err;
err = "interleaving unimplemented";
if (ill)
goto err;
// TOC
int num_crcs = 0;
while (1) {
unsigned char toc_byte[2];
str toc_entry = STR_CONST_INIT_BUF(toc_byte);
err = "missing TOC entry";
if (bitstr_shift_ret(&d, 6, &toc_entry))
goto err;
if (dec->codec_options.amr.octet_aligned)
if (bitstr_shift(&d, 2))
goto err;
unsigned char ft = (toc_byte[0] >> 3) & 0xf;
if (ft != 14 && ft != 15) {
num_crcs++;
err = "invalid frame type";
if (ft >= AMR_FT_TYPES)
goto err;
if (dec->codec_options.amr.bits_per_frame[ft] == 0)
goto err;
}
g_queue_push_tail(&toc, GUINT_TO_POINTER(toc_byte[0]));
// no F bit = last TOC entry
if (!(toc_byte[0] & 0x80))
break;
}
if (dec->codec_options.amr.crc) {
// CRCs is one byte per frame
err = "missing CRC entry";
if (bitstr_shift(&d, num_crcs * 8))
goto err;
// XXX use/check CRCs
}
while (toc.length) {
unsigned char toc_byte = GPOINTER_TO_UINT(g_queue_pop_head(&toc));
unsigned char ft = (toc_byte >> 3) & 0xf;
if (ft >= AMR_FT_TYPES) // invalid
continue;
unsigned int bits = dec->codec_options.amr.bits_per_frame[ft];
// AMR decoder expects an octet aligned TOC byte plus the payload
unsigned char frame_buf[(bits + 7) / 8 + 1 + 1];
str frame = STR_CONST_INIT_BUF(frame_buf);
str_shift(&frame, 1);
err = "short frame";
if (bitstr_shift_ret(&d, bits, &frame))
goto err;
// add TOC byte
str_shift(&frame, -1);
frame.s[0] = toc_byte & 0x7c; // strip F bit, keep FT and Q, zero padding (01111100)
if (dec->codec_options.amr.octet_aligned && (bits % 8) != 0) {
unsigned int padding_bits = 8 - (bits % 8);
if (bitstr_shift(&d, padding_bits))
goto err;
}
err = "failed to decode AMR data";
if (avc_decoder_input(dec, &frame, out))
goto err;
amr_bitrate_tracker(dec, ft);
}
return 0;
err:
if (err)
ilog(LOG_WARN | LOG_FLAG_LIMIT, "Error unpacking AMR packet: %s", err);
return -1;
}
static unsigned int amr_encoder_find_next_mode(encoder_t *enc) {
int mode = -1;
for (int i = 0; i < AMR_FT_TYPES; i++) {
int br = enc->codec_options.amr.bitrates[i];
if (!br) // end of list
break;
if (br == enc->u.avc.avcctx->bit_rate) {
mode = i;
break;
}
}
if (mode == -1)
return -1;
int next_mode = mode + 1;
// if modes are restricted, find the next one up
if (enc->codec_options.amr.mode_set) {
// is there anything?
if ((1 << next_mode) > enc->codec_options.amr.mode_set)
return -1;
int next_up = -1;
for (; next_mode < AMR_FT_TYPES; next_mode++) {
if (!(enc->codec_options.amr.mode_set & (1 << next_mode)))
continue;
next_up = next_mode;
break;
}
if (next_up == -1)
return -1;
next_mode = next_up;
}
// valid mode?
if (next_mode >= AMR_FT_TYPES || enc->codec_options.amr.bitrates[next_mode] == 0)
return -1;
return next_mode;
}
static void amr_encoder_mode_change(encoder_t *enc) {
if (!memcmp(&enc->codec_options.amr.cmr.cmr_in_ts,
&enc->u.avc.u.amr.cmr_in_ts, sizeof(struct timeval)))
return;
// mode change requested: check if this is allowed right now
if (enc->codec_options.amr.mode_change_period == 2 && (enc->u.avc.u.amr.pkt_seq & 1) != 0)
return;
unsigned int cmr = enc->codec_options.amr.cmr.cmr_in;
if (cmr == 0xffff)
cmr = amr_encoder_find_next_mode(enc);
if (cmr >= AMR_FT_TYPES)
return;
// ignore CMR for invalid modes
if (enc->codec_options.amr.mode_set && !(enc->codec_options.amr.mode_set & (1 << cmr)))
return;
int req_br = enc->codec_options.amr.bitrates[cmr];
if (!req_br)
return;
int cmr_done = 1;
if (enc->codec_options.amr.mode_change_neighbor) {
// handle non-neighbour mode changes
int cur_br = enc->u.avc.avcctx->bit_rate;
// step up or down from the requested bitrate towards the current one
int cmr_diff = (req_br > cur_br) ? -1 : 1;
int neigh_br = req_br;
int cmr_br = req_br;
while (1) {
// step up or down towards the current bitrate
cmr += cmr_diff;
// still in bounds?
if (cmr < 0 || cmr >= AMR_FT_TYPES)
break;
cmr_br = enc->codec_options.amr.bitrates[cmr];
if (cmr_br == cur_br)
break;
// allowed by mode set?
if (enc->codec_options.amr.mode_set) {
if (!(enc->codec_options.amr.mode_set & (1 << cmr)))
continue; // go to next mode
}
// valid bitrate - continue stepping
neigh_br = cmr_br;
}
// did we finish stepping or is there more to go?
if (neigh_br != req_br)
cmr_done = 0;
req_br = neigh_br; // set to this
}
enc->u.avc.avcctx->bit_rate = req_br;
if (cmr_done)
enc->u.avc.u.amr.cmr_in_ts = enc->codec_options.amr.cmr.cmr_in_ts;
}
static void amr_encoder_got_packet(encoder_t *enc) {
amr_encoder_mode_change(enc);
enc->u.avc.u.amr.pkt_seq++;
}
static int packetizer_amr(AVPacket *pkt, GString *buf, str *output, encoder_t *enc) {
assert(pkt->size >= 1);
// CMR + TOC byte (already included) + optional ILL/ILP + optional CRC + payload
assert(output->len >= pkt->size + 3);
unsigned char toc = pkt->data[0];
unsigned char ft = (toc >> 3) & 0xf;
if (ft > 15) {
ilog(LOG_WARN | LOG_FLAG_LIMIT, "Received bogus AMR FT %u from encoder", ft);
return -1;
}
if (ft >= 14) {
// NO_DATA or SPEECH_LOST
return -1;
}
assert(ft < AMR_FT_TYPES); // internal bug
unsigned int bits = enc->codec_options.amr.bits_per_frame[ft];
if (bits == 0) {
ilog(LOG_WARN | LOG_FLAG_LIMIT, "Received bogus AMR FT %u from encoder", ft);
return -1;
}
unsigned char *s = (unsigned char *) output->s; // for safe bit shifting
s[0] = '\xf0'; // no CMR req (4 bits)
// or do we have a CMR?
if (!enc->u.avc.u.amr.cmr_out_seq) {
if (memcmp(&enc->u.avc.u.amr.cmr_out_ts, &enc->codec_options.amr.cmr.cmr_out_ts,
sizeof(struct timeval))) {
enc->u.avc.u.amr.cmr_out_seq += 3; // make this configurable?
enc->u.avc.u.amr.cmr_out_ts = enc->codec_options.amr.cmr.cmr_out_ts;
}
}
if (enc->u.avc.u.amr.cmr_out_seq) {
enc->u.avc.u.amr.cmr_out_seq--;
unsigned int cmr = enc->codec_options.amr.cmr.cmr_out;
if (cmr < AMR_FT_TYPES && enc->codec_options.amr.bitrates[cmr])
s[0] = cmr << 4;
}
if (enc->codec_options.amr.octet_aligned) {
unsigned int offset = 1; // CMR byte
if (enc->codec_options.amr.interleaving)
s[offset++] = 0; // no interleaving
if (enc->codec_options.amr.crc)
s[offset++] = 0; // not implemented
memcpy(s + offset, pkt->data, pkt->size);
output->len = pkt->size + offset;
return 0;
}
// bit shift TOC byte in (6 bits)
s[0] |= pkt->data[0] >> 4;
s[1] = (pkt->data[0] & 0x0c) << 4;
// bit shift payload in (shifted by 4+6 = 10 bits = 1 byte + 2 bits
for (int i = 1; i < pkt->size; i++) {
s[i] |= pkt->data[i] >> 2;
s[i+1] = pkt->data[i] << 6;
}
// is the last byte just padding?
bits += 4 + 6; // CMR and TOC
unsigned int bytes = (bits + 7) / 8;
output->len = bytes;
return 0;
}
static int amr_packet_lost(decoder_t *dec, GQueue *out) {
ilog(LOG_DEBUG, "pushing empty/lost frame to AMR decoder");
unsigned char frame_buf[1];
frame_buf[0] = 0xf << 3; // no data
str frame = STR_CONST_INIT_BUF(frame_buf);
if (avc_decoder_input(dec, &frame, out))
ilog(LOG_WARN | LOG_FLAG_LIMIT, "Error while writing 'no data' frame to AMR decoder");
return 0;
}
#ifdef HAVE_BCG729
static void bcg729_def_init(codec_def_t *def) {
// test init
bcg729EncoderChannelContextStruct *e = initBcg729EncoderChannel(0);
bcg729DecoderChannelContextStruct *d = initBcg729DecoderChannel();
if (e) {
def->support_encoding = 1;
closeBcg729EncoderChannel(e);
}
if (d) {
def->support_decoding = 1;
closeBcg729DecoderChannel(d);
}
}
static const char *bcg729_decoder_init(decoder_t *dec, const str *fmtp, const str *extra_opts) {
dec->u.bcg729 = initBcg729DecoderChannel();
if (!dec->u.bcg729)
return "failed to initialize bcg729";
return NULL;
}
static int bcg729_decoder_input(decoder_t *dec, const str *data, GQueue *out) {
str input = *data;
u_int64_t pts = dec->pts;
while (input.len >= 2) {
int frame_len = input.len >= 10 ? 10 : 2;
str inp_frame = input;
inp_frame.len = frame_len;
str_shift(&input, frame_len);
AVFrame *frame = av_frame_alloc();
frame->nb_samples = 80;
frame->format = AV_SAMPLE_FMT_S16;
frame->sample_rate = dec->in_format.clockrate; // 8000
frame->channel_layout = av_get_default_channel_layout(dec->in_format.channels); // 1 channel
frame->pts = pts;
if (av_frame_get_buffer(frame, 0) < 0)
abort();
pts += frame->nb_samples;
// XXX handle lost packets and comfort noise
bcg729Decoder(dec->u.bcg729, (void *) inp_frame.s, inp_frame.len, 0, 0, 0,
(void *) frame->extended_data[0]);
g_queue_push_tail(out, frame);
}
return 0;
}
static void bcg729_decoder_close(decoder_t *dec) {
if (dec->u.bcg729)
closeBcg729DecoderChannel(dec->u.bcg729);
dec->u.bcg729 = NULL;
}
static const char *bcg729_encoder_init(encoder_t *enc, const str *fmtp, const str *extra_opts) {
enc->u.bcg729 = initBcg729EncoderChannel(0); // no VAD
if (!enc->u.bcg729)
return "failed to initialize bcg729";
enc->actual_format.format = AV_SAMPLE_FMT_S16;
enc->actual_format.channels = 1;
enc->actual_format.clockrate = 8000;
enc->samples_per_frame = 80;
enc->samples_per_packet = enc->actual_format.clockrate * enc->ptime / 1000;
return NULL;
}
static int bcg729_encoder_input(encoder_t *enc, AVFrame **frame) {
if (!*frame)
return 0;
if ((*frame)->nb_samples != 80) {
ilog(LOG_ERR | LOG_FLAG_LIMIT, "bcg729: input %u samples instead of 80", (*frame)->nb_samples);
return -1;
}
av_new_packet(&enc->avpkt, 10);
unsigned char len = 0;
bcg729Encoder(enc->u.bcg729, (void *) (*frame)->extended_data[0], enc->avpkt.data, &len);
if (!len) {
av_packet_unref(&enc->avpkt);
return 0;
}
enc->avpkt.size = len;
enc->avpkt.pts = (*frame)->pts;
return 0;
}
static void bcg729_encoder_close(encoder_t *enc) {
if (enc->u.bcg729)
closeBcg729EncoderChannel(enc->u.bcg729);
enc->u.bcg729 = NULL;
}
static int packetizer_g729(AVPacket *pkt, GString *buf, str *input_output, encoder_t *enc) {
// how many frames do we want?
int want_frames = input_output->len / 10;
// easiest case: we only want one frame. return what we got
if (want_frames == 1 && pkt)
return packetizer_passthrough(pkt, buf, input_output, enc);
// any other case, we go through our buffer
str output = *input_output; // remaining output buffer
if (pkt)
g_string_append_len(buf, (char *) pkt->data, pkt->size);
// how many frames do we have?
int have_audio_frames = buf->len / 10;
int have_noise_frames = (buf->len % 10) / 2;
// we have enough?
// special case: 4 noise frames (8 bytes) must be returned now, as otherwise
// (5 noise frames) they might become indistinguishable from an audio frame
if (have_audio_frames + have_noise_frames < want_frames
&& have_noise_frames != 4)
return -1;
// return non-silence/noise frames while we can
while (buf->len >= 10 && want_frames && output.len >= 10) {
memcpy(output.s, buf->str, 10);
g_string_erase(buf, 0, 10);
want_frames--;
str_shift(&output, 10);
}
// append silence/noise frames if we can
while (buf->len >= 2 && want_frames && output.len >= 2) {
memcpy(output.s, buf->str, 2);
g_string_erase(buf, 0, 2);
want_frames--;
str_shift(&output, 2);
}
if (output.len == input_output->len)
return -1; // got nothing
input_output->len = output.s - input_output->s;
return buf->len >= 2 ? 1 : 0;
}
#endif
static const char *dtmf_decoder_init(decoder_t *dec, const str *fmtp, const str *extra_opts) {
dec->u.dtmf.event = -1;
return NULL;
}
static int dtmf_decoder_input(decoder_t *dec, const str *data, GQueue *out) {
struct telephone_event_payload *dtmf;
if (data->len < sizeof(*dtmf)) {
ilog(LOG_WARN | LOG_FLAG_LIMIT, "Short DTMF event packet (len %u)", data->len);
return -1;
}
dtmf = (void *) data->s;
// init if we need to
if (dtmf->event != dec->u.dtmf.event || dec->rtp_ts != dec->u.dtmf.start_ts) {
ZERO(dec->u.dtmf);
dec->u.dtmf.event = dtmf->event;
dec->u.dtmf.start_ts = dec->rtp_ts;
ilog(LOG_DEBUG, "New DTMF event starting: %u at TS %lu", dtmf->event, dec->rtp_ts);
}
unsigned long duration = ntohs(dtmf->duration);
unsigned long frame_ts = dec->rtp_ts - dec->u.dtmf.start_ts + dec->u.dtmf.duration;
long num_samples = duration - dec->u.dtmf.duration;
ilog(LOG_DEBUG, "Generate DTMF samples for event %u, start TS %lu, TS now %lu, frame TS %lu, "
"duration %lu, "
"old duration %lu, num samples %li",
dtmf->event, dec->u.dtmf.start_ts, dec->rtp_ts, frame_ts,
duration, dec->u.dtmf.duration, num_samples);
if (num_samples <= 0)
return 0;
if (num_samples > dec->in_format.clockrate) {
ilog(LOG_ERR, "Cannot generate %li DTMF samples (clock rate %u)", num_samples,
dec->in_format.clockrate);
return -1;
}
// synthesise PCM
// first get our frame and figure out how many samples we need, and the start offset
AVFrame *frame = av_frame_alloc();
frame->nb_samples = num_samples;
frame->format = AV_SAMPLE_FMT_S16;
frame->sample_rate = dec->in_format.clockrate;
frame->channel_layout = AV_CH_LAYOUT_MONO;
frame->pts = frame_ts;
if (av_frame_get_buffer(frame, 0) < 0)
abort();
// fill samples
dtmf_samples(frame->extended_data[0], frame_ts, frame->nb_samples, dtmf->event,
dtmf->volume, dec->in_format.clockrate);
g_queue_push_tail(out, frame);
dec->u.dtmf.duration = duration;
return 0;
}
static int format_cmp_ignore(const struct rtp_payload_type *a, const struct rtp_payload_type *b) {
return 0;
}
static int cn_decoder_input(decoder_t *dec, const str *data, GQueue *out) {
// generate one set of ptime worth of samples
int ptime = dec->ptime;
if (!ptime)
ptime = 20; // ?
int samples = dec->in_format.clockrate * ptime / 1000;
dec->u.avc.avcctx->frame_size = samples;
int ret = avc_decoder_input(dec, data, out);
if (ret)
return ret;
if (!out->length)
return -1;
return 0;
}