You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtpengine/lib/bufferpool.c

319 lines
7.4 KiB

#include "bufferpool.h"
#include <glib.h>
#include <stdbool.h>
#include "obj.h"
#define ALIGN 8 // bytes
struct bufferpool {
void *(*alloc)(size_t);
void (*dealloc)(void *);
void (*dealloc2)(void *, size_t);
size_t shard_size;
mutex_t lock;
GQueue empty_shards;
GQueue full_shards;
bool destroy;
};
struct bpool_shard {
struct bufferpool *bp;
unsigned int refs;
void *buf;
void *end;
size_t size;
void *head;
bool full;
unsigned int (*recycle)(void *);
void *arg;
};
// sorted list of all shards for quick bsearch
static rwlock_t bpool_shards_lock;
static GPtrArray *bpool_shards;
static struct bufferpool *bufferpool_new_common(void *(*alloc)(size_t), size_t shard_size) {
struct bufferpool *ret = g_new0(__typeof(*ret), 1);
ret->alloc = alloc;
ret->shard_size = shard_size;
mutex_init(&ret->lock);
g_queue_init(&ret->empty_shards);
g_queue_init(&ret->full_shards);
return ret;
}
struct bufferpool *bufferpool_new(void *(*alloc)(size_t), void (*dealloc)(void *), size_t shard_size) {
struct bufferpool *ret = bufferpool_new_common(alloc, shard_size);
ret->dealloc = dealloc;
return ret;
}
struct bufferpool *bufferpool_new2(void *(*alloc)(size_t), void (*dealloc)(void *, size_t), size_t shard_size) {
struct bufferpool *ret = bufferpool_new_common(alloc, shard_size);
ret->dealloc2 = dealloc;
return ret;
}
// bufferpool is locked and shard is in "full" list but with zero refs
static void bufferpool_recycle(struct bpool_shard *shard) {
struct bufferpool *bp = shard->bp;
shard->head = shard->buf;
if (shard->recycle)
shard->refs += shard->recycle(shard->arg);
if (shard->refs == 0) {
shard->full = false;
GList *link = g_queue_find(&bp->full_shards, shard); // XXX avoid this
g_queue_delete_link(&bp->full_shards, link);
g_queue_push_tail(&bp->empty_shards, shard);
}
}
static void bufferpool_dealloc(struct bpool_shard *shard) {
struct bufferpool *bp = shard->bp;
void *p = shard->buf;
size_t len = shard->size;
if (bp->dealloc)
bp->dealloc(p);
else
bp->dealloc2(p, len);
}
// bufferpool is locked
static void shard_check_full(struct bpool_shard *shard) {
if (shard->refs != 0 || !shard->full)
return;
bufferpool_recycle(shard);
}
static int bpool_shards_sort(const void *A, const void *B) {
const struct bpool_shard * const * const Ap = A, * const * const Bp = B;
if ((*Ap)->buf < (*Bp)->buf)
return -1;
if ((*Ap)->buf > (*Bp)->buf)
return 1;
return 0;
}
static struct bpool_shard *bufferpool_new_shard(struct bufferpool *bp) {
void *buf = bp->alloc(bp->shard_size);
if (!buf)
return NULL;
struct bpool_shard *ret = g_new0(__typeof(*ret), 1);
ret->bp = bp;
ret->buf = buf;
ret->size = bp->shard_size;
ret->head = buf;
ret->end = buf + bp->shard_size;
RWLOCK_W(&bpool_shards_lock);
g_ptr_array_add(bpool_shards, ret);
g_ptr_array_sort(bpool_shards, bpool_shards_sort);
return ret;
}
void *bufferpool_alloc(struct bufferpool *bp, size_t len) {
if (len > bp->shard_size)
return NULL;
LOCK(&bp->lock);
// check existing shards if one has enough room. if not, create a new one
struct bpool_shard *shard;
while (true) {
if (!bp->empty_shards.length) {
shard = bufferpool_new_shard(bp);
g_queue_push_tail(&bp->empty_shards, shard);
break;
}
shard = bp->empty_shards.head->data;
if (shard->head + len <= shard->end)
break;
g_queue_pop_head(&bp->empty_shards);
g_queue_push_tail(&bp->full_shards, shard);
shard->full = true;
shard_check_full(shard);
}
// allocate buffer from shard
void *ret = shard->head;
shard->refs++;
shard->head += ((len + ALIGN - 1) / ALIGN) * ALIGN;
return ret;
}
void *bufferpool_reserve(struct bufferpool *bp, unsigned int refs, unsigned int (*recycle)(void *), void *arg) {
LOCK(&bp->lock);
// get a completely empty shard. create one if needed
struct bpool_shard *shard = g_queue_peek_head(&bp->empty_shards);
if (shard && shard->head == shard->buf && shard->refs == 0)
g_queue_pop_head(&bp->empty_shards);
else
shard = bufferpool_new_shard(bp);
// set references, set recycle callback, move to full list
shard->refs = refs;
shard->full = true;
g_queue_push_tail(&bp->full_shards, shard);
shard->recycle = recycle;
shard->arg = arg;
return shard->buf;
}
static int bpool_shard_cmp(const void *buf, const void *ptr) {
struct bpool_shard *const *sptr = ptr;
struct bpool_shard *shard = *sptr;
if (buf < shard->buf)
return -1;
if (buf >= shard->end)
return 1;
return 0;
}
// bpool_shards_lock must be held
static struct bpool_shard **bpool_find_shard_ptr(void *p) {
return bsearch(p, bpool_shards->pdata, bpool_shards->len,
sizeof(*bpool_shards->pdata), bpool_shard_cmp);
}
// bpool_shards_lock must be held
static struct bpool_shard *bpool_find_shard(void *p) {
struct bpool_shard **sp = bpool_find_shard_ptr(p);
return sp ? *sp : NULL;
}
static void bpool_shard_destroy(struct bpool_shard *shard) {
RWLOCK_W(&bpool_shards_lock);
struct bpool_shard **ele = bpool_find_shard_ptr(shard->buf);
size_t idx = (void **) ele - bpool_shards->pdata;
g_ptr_array_remove_index(bpool_shards, idx);
bufferpool_dealloc(shard);
g_free(shard);
}
static void bpool_shard_delayed_destroy(struct bufferpool *bp, struct bpool_shard *shard) {
if (shard->full) {
GList *link = g_queue_find(&bp->full_shards, shard);
g_queue_delete_link(&bp->full_shards, link);
}
else {
GList *link = g_queue_find(&bp->empty_shards, shard);
g_queue_delete_link(&bp->empty_shards, link);
}
bpool_shard_destroy(shard);
}
void bufferpool_unref(void *p) {
if (!p)
return;
struct bpool_shard *shard;
struct bufferpool *bpool;
{
RWLOCK_R(&bpool_shards_lock);
shard = bpool_find_shard(p);
if (!shard) // should only happen during shutdown
return;
bpool = shard->bp;
}
{
LOCK(&bpool->lock);
assert(shard->refs != 0);
shard->refs--;
// handle delayed destruction
if (!bpool->destroy) {
shard_check_full(shard);
return;
}
// wait for refs to drop to zero, then remove/free shard, and destroy pool if no shards left
if (shard->refs > 0)
return;
bpool_shard_delayed_destroy(bpool, shard);
if (bpool->full_shards.length || bpool->empty_shards.length)
return; // still some left
}
// no shards left, can destroy now
bufferpool_destroy(bpool);
}
void bufferpool_release(void *p) {
if (!p)
return;
struct bpool_shard *shard;
struct bufferpool *bpool;
{
RWLOCK_R(&bpool_shards_lock);
shard = bpool_find_shard(p);
bpool = shard->bp;
}
LOCK(&bpool->lock);
assert(shard->refs != 0);
shard->refs = 0;
}
void *bufferpool_ref(void *p) {
if (!p)
return NULL;
struct bpool_shard *shard;
struct bufferpool *bpool;
{
RWLOCK_R(&bpool_shards_lock);
shard = bpool_find_shard(p);
bpool = shard->bp;
}
LOCK(&bpool->lock);
assert(shard->refs != 0);
shard->refs++;
return p;
}
static void bpool_destroy_shards(GQueue *q) {
GList *l = q->head;
while (l) {
GList *n = l->next;
struct bpool_shard *shard = l->data;
if (shard->refs == 0) {
bpool_shard_destroy(shard);
g_queue_delete_link(q, l);
}
l = n;
}
}
void bufferpool_destroy(struct bufferpool *bp) {
{
LOCK(&bp->lock);
bpool_destroy_shards(&bp->full_shards);
bpool_destroy_shards(&bp->empty_shards);
if (bp->full_shards.length || bp->empty_shards.length) {
// deferred destruction
bp->destroy = true;
return;
}
}
g_free(bp);
}
void bufferpool_init(void) {
rwlock_init(&bpool_shards_lock);
bpool_shards = g_ptr_array_new();
}
void bufferpool_cleanup(void) {
rwlock_destroy(&bpool_shards_lock);
assert(bpool_shards->len == 0);
g_ptr_array_free(bpool_shards, true);
}