You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtpengine/kernel-module/xt_RTPENGINE.c

6703 lines
167 KiB

#include <linux/types.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <net/ip6_checksum.h>
#include <linux/udp.h>
#include <net/udp.h>
#include <linux/icmp.h>
#include <linux/version.h>
#include <linux/err.h>
#include <linux/crypto.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,12,0)
#include <crypto/internal/cipher.h>
#endif
#include <crypto/aes.h>
#include <crypto/hash.h>
#include <crypto/aead.h>
#include <net/icmp.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <net/route.h>
#include <net/ip6_route.h>
#include <net/dst.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/bsearch.h>
#include <asm/atomic.h>
#include <linux/netfilter_ipv4/ip_tables.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_ipv6.h>
#include <linux/netfilter/x_tables.h>
#include <linux/crc32.h>
#include <linux/math64.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/btree.h>
#include "xt_RTPENGINE.h"
MODULE_LICENSE("GPL");
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,12,0)
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
#endif
MODULE_ALIAS("ipt_RTPENGINE");
MODULE_ALIAS("ip6t_RTPENGINE");
// fix for older compilers
#ifndef RHEL_RELEASE_VERSION
#define RHEL_RELEASE_VERSION(x,y) 0
#endif
#define MAX_ID 64 /* - 1 */
#define MAX_SKB_TAIL_ROOM (sizeof(((struct rtpengine_srtp *) 0)->mki) + 20 + 16)
#define MIPF "%i:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x:%u"
#define MIPP(x) (x).family, \
(x).u.u8[0], \
(x).u.u8[1], \
(x).u.u8[2], \
(x).u.u8[3], \
(x).u.u8[4], \
(x).u.u8[5], \
(x).u.u8[6], \
(x).u.u8[7], \
(x).u.u8[8], \
(x).u.u8[9], \
(x).u.u8[10], \
(x).u.u8[11], \
(x).u.u8[12], \
(x).u.u8[13], \
(x).u.u8[14], \
(x).u.u8[15], \
(x).port
// RFC 3711 non-complience (4 vs 6, see rtcp.c)
#define SRTCP_R_LENGTH 6
#if 0
#define DBG(fmt, ...) printk(KERN_DEBUG "[PID %i line %i] " fmt, current ? current->pid : -1, \
__LINE__, ##__VA_ARGS__)
#else
#define DBG(x...) ((void)0)
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)
#define PAR_STATE_NET(p) (p)->state->net
#else /* minimum 4.4.x */
#define PAR_STATE_NET(p) (p)->net
#endif
#if 0
#define _s_lock(l, f) do { \
printk(KERN_DEBUG "[PID %i %s:%i] acquiring lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
spin_lock_irqsave(l, f); \
printk(KERN_DEBUG "[PID %i %s:%i] has acquired lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
} while (0)
#define _s_unlock(l, f) do { \
printk(KERN_DEBUG "[PID %i %s:%i] is unlocking %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
spin_unlock_irqrestore(l, f); \
printk(KERN_DEBUG "[PID %i %s:%i] has released lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
} while (0)
#define _r_lock(l, f) do { \
printk(KERN_DEBUG "[PID %i %s:%i] acquiring read lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
read_lock_irqsave(l, f); \
printk(KERN_DEBUG "[PID %i %s:%i] has acquired read lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
} while (0)
#define _r_unlock(l, f) do { \
printk(KERN_DEBUG "[PID %i %s:%i] is read unlocking %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
read_unlock_irqrestore(l, f); \
printk(KERN_DEBUG "[PID %i %s:%i] has released read lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
} while (0)
#define _w_lock(l, f) do { \
printk(KERN_DEBUG "[PID %i %s:%i] acquiring write lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
write_lock_irqsave(l, f); \
printk(KERN_DEBUG "[PID %i %s:%i] has acquired write lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
} while (0)
#define _w_unlock(l, f) do { \
printk(KERN_DEBUG "[PID %i %s:%i] is write unlocking %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
write_unlock_irqrestore(l, f); \
printk(KERN_DEBUG "[PID %i %s:%i] has released write lock %s\n", \
current ? current->pid : -1, \
__FUNCTION__, __LINE__, #l); \
} while (0)
#else
#define _s_lock(l, f) spin_lock_irqsave(l, f)
#define _s_unlock(l, f) spin_unlock_irqrestore(l, f)
#define _r_lock(l, f) read_lock_irqsave(l, f)
#define _r_unlock(l, f) read_unlock_irqrestore(l, f)
#define _w_lock(l, f) write_lock_irqsave(l, f)
#define _w_unlock(l, f) write_unlock_irqrestore(l, f)
#endif
#if 0
#define _spinlock_t spinlock_t
#define _spin_lock_init(x) spin_lock_init(x)
#define _spin_lock(x) spin_lock(x)
#define _spin_unlock(x) spin_unlock(x)
#define _rwlock_t rwlock_t
#define _rwlock_init(x) rwlock_init(x)
#define _read_lock(x) read_lock(x)
#define _read_unlock(x) read_unlock(x)
#define _write_lock(x) write_lock(x)
#define _write_unlock(x) write_unlock(x)
#else
typedef struct {
spinlock_t l;
int owner;
int line;
} _spinlock_t;
static inline void _spin_lock_init(_spinlock_t *s) {
spin_lock_init(&s->l);
s->owner = 0;
}
static inline void __spin_lock(_spinlock_t *s, int line) {
unsigned int cnt = 0;
while (true) {
if (spin_trylock(&s->l)) {
s->owner = current->pid;
s->line = line;
return;
}
cnt++;
if (cnt == 100000000)
printk(KERN_WARNING "%i stuck at %i, owned by %i at %i\n", current->pid, line, s->owner, s->line);
}
}
static inline void _spin_unlock(_spinlock_t *s) {
s->owner = 0;
spin_unlock(&s->l);
}
typedef struct {
rwlock_t l;
int owner;
int line;
} _rwlock_t;
static inline void _rwlock_init(_rwlock_t *s) {
rwlock_init(&s->l);
s->owner = 0;
}
static inline void __read_lock(_rwlock_t *s, int line) {
unsigned int cnt = 0;
while (true) {
if (read_trylock(&s->l))
return;
cnt++;
if (cnt == 100000000)
printk(KERN_WARNING "%i stuck at %i, owned by %i at %i\n", current->pid, line, s->owner, s->line);
}
}
static inline void _read_unlock(_rwlock_t *s) {
read_unlock(&s->l);
}
static inline void __write_lock(_rwlock_t *s, int line) {
unsigned int cnt = 0;
while (true) {
if (write_trylock(&s->l)) {
s->owner = current->pid;
s->line = line;
return;
}
cnt++;
if (cnt == 100000000)
printk(KERN_WARNING "%i stuck at %i, owned by %i at %i\n", current->pid, line, s->owner, s->line);
}
}
static inline void _write_unlock(_rwlock_t *s) {
s->owner = 0;
write_unlock(&s->l);
}
#define _spin_lock(x) __spin_lock(x, __LINE__)
#define _read_lock(x) __read_lock(x, __LINE__)
#define _write_lock(x) __write_lock(x, __LINE__)
#endif
#if defined(RHEL_RELEASE_CODE) && LINUX_VERSION_CODE >= KERNEL_VERSION(5,14,0) && \
RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(9,1)
#define PDE_DATA(i) pde_data(i)
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(5,17,0)
#define PDE_DATA(i) pde_data(i)
#endif
struct re_hmac;
struct re_cipher;
struct rtp_parsed;
struct re_crypto_context;
struct re_auto_array;
struct re_call;
struct re_stream;
struct rtpengine_table;
struct crypto_aead;
struct rtpengine_output;
static kuid_t proc_kuid;
static uint proc_uid = 0;
module_param(proc_uid, uint, 0444);
MODULE_PARM_DESC(proc_uid, "rtpengine procfs tree user id");
static kgid_t proc_kgid;
static uint proc_gid = 0;
module_param(proc_gid, uint, 0444);
MODULE_PARM_DESC(proc_gid, "rtpengine procfs tree group id");
static int proc_mask;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,10,0)
module_param(proc_mask, hexint, 0444);
#else
module_param(proc_mask, uint, 0444);
#endif
MODULE_PARM_DESC(proc_mask, "rtpengine procfs tree mode mask");
static uint stream_packets_list_limit = 10;
module_param(stream_packets_list_limit, uint, 0444);
MODULE_PARM_DESC(stream_packets_list_limit, "maximum number of packets to retain for intercept streams");
static bool log_errors = 0;
module_param(log_errors, bool, 0644);
MODULE_PARM_DESC(log_errors, "generate kernel log lines from forwarding errors");
#define log_err(fmt, ...) do { if (log_errors) printk(KERN_NOTICE "rtpengine[%s:%i]: " fmt, \
__FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
static ssize_t proc_control_read(struct file *, char __user *, size_t, loff_t *);
static ssize_t proc_control_write(struct file *, const char __user *, size_t, loff_t *);
static int proc_control_open(struct inode *, struct file *);
static int proc_control_close(struct inode *, struct file *);
static int proc_control_mmap(struct file *, struct vm_area_struct *);
static ssize_t proc_status(struct file *, char __user *, size_t, loff_t *);
static ssize_t proc_main_control_write(struct file *, const char __user *, size_t, loff_t *);
static int proc_generic_open_modref(struct inode *, struct file *);
static int proc_generic_open_stream_modref(struct inode *inode, struct file *file);
static int proc_generic_close_modref(struct inode *, struct file *);
static int proc_generic_seqrelease_modref(struct inode *inode, struct file *file);
static int proc_list_open(struct inode *, struct file *);
static void *proc_list_start(struct seq_file *, loff_t *);
static void proc_list_stop(struct seq_file *, void *);
static void *proc_list_next(struct seq_file *, void *, loff_t *);
static int proc_list_show(struct seq_file *, void *);
static int proc_main_list_open(struct inode *, struct file *);
static void *proc_main_list_start(struct seq_file *, loff_t *);
static void proc_main_list_stop(struct seq_file *, void *);
static void *proc_main_list_next(struct seq_file *, void *, loff_t *);
static int proc_main_list_show(struct seq_file *, void *);
static int proc_stream_open(struct inode *i, struct file *f);
static int proc_stream_close(struct inode *i, struct file *f);
static ssize_t proc_stream_read(struct file *f, char __user *b, size_t l, loff_t *o);
static unsigned int proc_stream_poll(struct file *f, struct poll_table_struct *p);
static void table_put(struct rtpengine_table *);
static struct rtpengine_target *get_target(struct rtpengine_table *, const struct re_address *);
static int is_valid_address(const struct re_address *rea);
static int aes_f8_session_key_init(struct re_crypto_context *, const struct rtpengine_srtp *);
static int srtp_encrypt_aes_cm(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtcp_encrypt_aes_cm(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtp_encrypt_aes_f8(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtcp_encrypt_aes_f8(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtp_encrypt_aes_gcm(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtcp_encrypt_aes_gcm(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtp_decrypt_aes_gcm(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int srtcp_decrypt_aes_gcm(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
static int send_proxy_packet_output(struct sk_buff *skb, struct rtpengine_target *g,
int rtp_pt_idx,
struct rtpengine_output *o, struct rtp_parsed *rtp, int ssrc_idx,
const struct xt_action_param *par);
static int send_proxy_packet(struct sk_buff *skb, struct re_address *src, struct re_address *dst,
unsigned char tos, const struct xt_action_param *par);
static uint32_t proxy_packet_srtp_encrypt(struct sk_buff *skb, struct re_crypto_context *ctx,
struct rtpengine_srtp *srtp,
struct rtp_parsed *rtp, int ssrc_idx,
struct ssrc_stats **ssrc_stats);
static void call_put(struct re_call *call);
static void del_stream(struct re_stream *stream, struct rtpengine_table *);
static void del_call(struct re_call *call, struct rtpengine_table *);
static inline int bitfield_set(unsigned long *bf, unsigned int i);
static inline int bitfield_clear(unsigned long *bf, unsigned int i);
// mirror global_stats_counter from userspace
struct global_stats_counter {
#define F(x) atomic64_t x;
#include "kernel_counter_stats_fields.inc"
#undef F
};
struct re_crypto_context {
spinlock_t lock; /* protects roc and last_*_index */
unsigned char session_key[32];
unsigned char session_salt[14];
unsigned char session_auth_key[20];
struct crypto_cipher *tfm[2];
struct crypto_shash *shash;
struct crypto_aead *aead;
const struct re_cipher *cipher;
const struct re_hmac *hmac;
};
struct rtpengine_output {
struct rtpengine_output_info output;
struct re_crypto_context encrypt_rtp;
struct re_crypto_context encrypt_rtcp;
};
struct rtpengine_target {
atomic_t refcnt;
uint32_t table;
struct rtpengine_target_info target;
unsigned int last_pt; // index into pt_input[] and pt_output[]
spinlock_t ssrc_stats_lock;
struct re_crypto_context decrypt_rtp;
struct re_crypto_context decrypt_rtcp;
rwlock_t outputs_lock;
struct rtpengine_output *outputs;
unsigned int num_rtp_destinations;
unsigned int outputs_unfilled; // only ever decreases
};
struct re_bitfield {
unsigned long b[256 / (sizeof(unsigned long) * 8)];
unsigned int used;
};
struct re_bucket {
struct re_bitfield ports_lo_bf;
struct rtpengine_target *ports_lo[256];
};
struct re_dest_addr {
struct re_address destination;
struct re_bitfield ports_hi_bf;
struct re_bucket *ports_hi[256];
};
struct re_dest_addr_hash {
struct re_bitfield addrs_bf;
struct re_dest_addr *addrs[256];
};
struct re_auto_array_free_list {
struct list_head list_entry;
unsigned int index;
};
struct re_auto_array {
rwlock_t lock;
void **array;
unsigned int array_len;
unsigned long *used_bitfield;
struct list_head free_list;
};
struct re_call {
atomic_t refcnt;
struct rtpengine_call_info info;
unsigned int table_id;
u32 hash_bucket;
int deleted; /* protected by calls.lock */
struct proc_dir_entry *root;
struct list_head table_entry; /* protected by calls.lock */
struct hlist_node calls_hash_entry;
struct list_head streams; /* protected by streams.lock */
};
struct re_stream_packet {
struct list_head list_entry;
unsigned int buflen;
struct sk_buff *skbuf;
unsigned char buf[];
};
struct re_stream {
atomic_t refcnt;
struct rtpengine_stream_info info;
u32 hash_bucket;
struct proc_dir_entry *file;
struct re_call *call; /* holds a reference */
struct list_head call_entry; /* protected by streams.lock */
struct hlist_node streams_hash_entry;
spinlock_t packet_list_lock;
struct list_head packet_list;
unsigned int list_count;
wait_queue_head_t read_wq;
wait_queue_head_t close_wq;
int eof; /* protected by packet_list_lock */
};
#define RE_HASH_BITS 8 /* make configurable? */
struct rtpengine_table {
atomic_t refcnt;
rwlock_t target_lock;
pid_t pid;
unsigned int id;
struct proc_dir_entry *proc_root;
struct proc_dir_entry *proc_status;
struct proc_dir_entry *proc_control;
struct proc_dir_entry *proc_list;
struct proc_dir_entry *proc_calls;
struct re_dest_addr_hash dest_addr_hash;
unsigned int num_targets;
struct list_head calls; /* protected by calls.lock */
spinlock_t calls_hash_lock[1 << RE_HASH_BITS];
struct hlist_head calls_hash[1 << RE_HASH_BITS];
spinlock_t streams_hash_lock[1 << RE_HASH_BITS];
struct hlist_head streams_hash[1 << RE_HASH_BITS];
spinlock_t shm_lock;
struct list_head shm_list;
struct global_stats_counter *rtpe_stats;
_spinlock_t player_lock;
struct list_head play_streams;
unsigned int num_play_streams;
struct list_head packet_streams;
unsigned int num_packet_streams;
};
struct re_cipher {
enum rtpengine_cipher id;
const char *name;
const char *tfm_name;
const char *aead_name;
int (*decrypt_rtp)(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
int (*encrypt_rtp)(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
int (*decrypt_rtcp)(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
int (*encrypt_rtcp)(struct re_crypto_context *, struct rtpengine_srtp *,
struct rtp_parsed *, uint32_t *);
int (*session_key_init)(struct re_crypto_context *, const struct rtpengine_srtp *);
};
struct re_hmac {
enum rtpengine_hmac id;
const char *name;
const char *tfm_name;
};
struct re_shm {
void *head;
size_t size;
unsigned int order;
struct list_head list_entry;
};
/* XXX shared */
struct rtp_header {
unsigned char v_p_x_cc;
unsigned char m_pt;
uint16_t seq_num;
uint32_t timestamp;
uint32_t ssrc;
uint32_t csrc[];
} __attribute__ ((packed));
struct rtcp_header {
unsigned char v_p_x_cc;
unsigned char pt;
uint16_t length;
uint32_t ssrc;
} __attribute__ ((packed));
struct rtp_extension {
uint16_t undefined;
uint16_t length;
} __attribute__ ((packed));
struct rtp_parsed {
union {
struct rtp_header *rtp_header;
struct rtcp_header *rtcp_header;
};
unsigned int header_len;
unsigned char *payload;
unsigned int payload_len;
int ok;
int rtcp;
};
struct play_stream_packet {
struct list_head list;
ktime_t delay;
uint32_t ts;
uint32_t duration_ts;
uint16_t seq;
//struct sk_buff *skb;
char *data;
size_t len;
};
struct play_stream_packets {
atomic_t refcnt;
_rwlock_t lock;
struct list_head packets;
unsigned int len;
unsigned int table_id;
struct list_head table_entry;
unsigned int idx;
};
struct play_stream {
_spinlock_t lock;
atomic_t refcnt;
unsigned int idx;
struct rtpengine_play_stream_info info;
struct re_crypto_context encrypt;
struct play_stream_packets *packets;
ktime_t start_time;
struct play_stream_packet *position;
struct timer_thread *timer_thread;
uint64_t tree_index;
unsigned int table_id;
struct list_head table_entry;
};
struct timer_thread {
struct list_head list;
unsigned int idx;
struct task_struct *task;
wait_queue_head_t queue;
atomic_t shutdown;
_spinlock_t tree_lock; // XXX use mutex?
struct btree_head64 tree; // timer entries // XXX use rbtree?
bool tree_added;
struct play_stream *scheduled;
ktime_t scheduled_at;
};
static void free_packet_stream(struct play_stream_packets *stream);
static void free_play_stream_packet(struct play_stream_packet *p);
static void free_play_stream(struct play_stream *s);
static void do_stop_stream(struct play_stream *stream);
static struct proc_dir_entry *my_proc_root;
static struct proc_dir_entry *proc_list;
static struct proc_dir_entry *proc_control;
static struct rtpengine_table *table[MAX_ID];
static rwlock_t table_lock;
static struct re_auto_array calls;
static struct re_auto_array streams;
static _rwlock_t media_player_lock;
static struct play_stream_packets **stream_packets;
static unsigned int num_stream_packets;
static atomic_t last_stream_packets_idx;
static struct play_stream **play_streams;
static unsigned int num_play_streams;
static atomic_t last_play_stream_idx;
static struct timer_thread **timer_threads;
static unsigned int num_timer_threads;
static atomic_t last_timer_thread_idx;
#if LINUX_VERSION_CODE < KERNEL_VERSION(5,6,0)
# define PROC_OP_STRUCT file_operations
# define PROC_OWNER \
.owner = THIS_MODULE,
# define PROC_READ read
# define PROC_WRITE write
# define PROC_OPEN open
# define PROC_RELEASE release
# define PROC_LSEEK llseek
# define PROC_POLL poll
# define PROC_MMAP mmap
#else
# define PROC_OP_STRUCT proc_ops
# define PROC_OWNER
# define PROC_READ proc_read
# define PROC_WRITE proc_write
# define PROC_OPEN proc_open
# define PROC_RELEASE proc_release
# define PROC_LSEEK proc_lseek
# define PROC_POLL proc_poll
# define PROC_MMAP proc_mmap
#endif
static const struct PROC_OP_STRUCT proc_control_ops = {
PROC_OWNER
.PROC_READ = proc_control_read,
.PROC_WRITE = proc_control_write,
.PROC_OPEN = proc_control_open,
.PROC_RELEASE = proc_control_close,
.PROC_MMAP = proc_control_mmap,
};
static const struct PROC_OP_STRUCT proc_main_control_ops = {
PROC_OWNER
.PROC_WRITE = proc_main_control_write,
.PROC_OPEN = proc_generic_open_stream_modref,
.PROC_RELEASE = proc_generic_close_modref,
};
static const struct PROC_OP_STRUCT proc_status_ops = {
PROC_OWNER
.PROC_READ = proc_status,
.PROC_OPEN = proc_generic_open_modref,
.PROC_RELEASE = proc_generic_close_modref,
};
static const struct PROC_OP_STRUCT proc_list_ops = {
PROC_OWNER
.PROC_OPEN = proc_list_open,
.PROC_READ = seq_read,
.PROC_LSEEK = seq_lseek,
.PROC_RELEASE = proc_generic_seqrelease_modref,
};
static const struct seq_operations proc_list_seq_ops = {
.start = proc_list_start,
.next = proc_list_next,
.stop = proc_list_stop,
.show = proc_list_show,
};
static const struct PROC_OP_STRUCT proc_main_list_ops = {
PROC_OWNER
.PROC_OPEN = proc_main_list_open,
.PROC_READ = seq_read,
.PROC_LSEEK = seq_lseek,
.PROC_RELEASE = proc_generic_seqrelease_modref,
};
static const struct seq_operations proc_main_list_seq_ops = {
.start = proc_main_list_start,
.next = proc_main_list_next,
.stop = proc_main_list_stop,
.show = proc_main_list_show,
};
static const struct PROC_OP_STRUCT proc_stream_ops = {
PROC_OWNER
.PROC_READ = proc_stream_read,
.PROC_POLL = proc_stream_poll,
.PROC_OPEN = proc_stream_open,
.PROC_RELEASE = proc_stream_close,
};
static const struct re_cipher re_ciphers[] = {
[REC_INVALID] = {
.id = REC_INVALID,
.name = NULL,
},
[REC_NULL] = {
.id = REC_NULL,
.name = "NULL",
},
[REC_AES_CM_128] = {
.id = REC_AES_CM_128,
.name = "AES-CM-128",
.tfm_name = "aes",
.decrypt_rtp = srtp_encrypt_aes_cm,
.encrypt_rtp = srtp_encrypt_aes_cm,
.decrypt_rtcp = srtcp_encrypt_aes_cm,
.encrypt_rtcp = srtcp_encrypt_aes_cm,
},
[REC_AES_F8] = {
.id = REC_AES_F8,
.name = "AES-F8",
.tfm_name = "aes",
.decrypt_rtp = srtp_encrypt_aes_f8,
.encrypt_rtp = srtp_encrypt_aes_f8,
.decrypt_rtcp = srtcp_encrypt_aes_f8,
.encrypt_rtcp = srtcp_encrypt_aes_f8,
.session_key_init = aes_f8_session_key_init,
},
[REC_AES_CM_192] = {
.id = REC_AES_CM_192,
.name = "AES-CM-192",
.tfm_name = "aes",
.decrypt_rtp = srtp_encrypt_aes_cm,
.encrypt_rtp = srtp_encrypt_aes_cm,
.decrypt_rtcp = srtcp_encrypt_aes_cm,
.encrypt_rtcp = srtcp_encrypt_aes_cm,
},
[REC_AES_CM_256] = {
.id = REC_AES_CM_256,
.name = "AES-CM-256",
.tfm_name = "aes",
.decrypt_rtp = srtp_encrypt_aes_cm,
.encrypt_rtp = srtp_encrypt_aes_cm,
.decrypt_rtcp = srtcp_encrypt_aes_cm,
.encrypt_rtcp = srtcp_encrypt_aes_cm,
},
[REC_AEAD_AES_GCM_128] = {
.id = REC_AEAD_AES_GCM_128,
.name = "AEAD-AES-GCM-128",
.aead_name = "gcm(aes)",
.decrypt_rtp = srtp_decrypt_aes_gcm,
.encrypt_rtp = srtp_encrypt_aes_gcm,
.decrypt_rtcp = srtcp_decrypt_aes_gcm,
.encrypt_rtcp = srtcp_encrypt_aes_gcm,
},
[REC_AEAD_AES_GCM_256] = {
.id = REC_AEAD_AES_GCM_256,
.name = "AEAD-AES-GCM-256",
.aead_name = "gcm(aes)",
.decrypt_rtp = srtp_decrypt_aes_gcm,
.encrypt_rtp = srtp_encrypt_aes_gcm,
.decrypt_rtcp = srtcp_decrypt_aes_gcm,
.encrypt_rtcp = srtcp_encrypt_aes_gcm,
},
};
static const struct re_hmac re_hmacs[] = {
[REH_INVALID] = {
.id = REH_INVALID,
.name = NULL,
},
[REH_NULL] = {
.id = REH_NULL,
.name = "NULL",
},
[REH_HMAC_SHA1] = {
.id = REH_HMAC_SHA1,
.name = "HMAC-SHA1",
.tfm_name = "hmac(sha1)",
},
};
static const char *re_msm_strings[] = {
[MSM_IGNORE] = "",
[MSM_DROP] = "drop",
[MSM_PROPAGATE] = "propagate",
};
/* must already be initialized to zero */
static void auto_array_init(struct re_auto_array *a) {
rwlock_init(&a->lock);
INIT_LIST_HEAD(&a->free_list);
}
/* lock must be held */
static void set_auto_array_index(struct re_auto_array *a, unsigned int idx, void *ptr) {
a->array[idx] = ptr;
bitfield_set(a->used_bitfield, idx);
}
/* lock must be held */
static void auto_array_clear_index(struct re_auto_array *a, unsigned int idx) {
struct re_auto_array_free_list *fl;
bitfield_clear(a->used_bitfield, idx);
a->array[idx] = NULL;
fl = kmalloc(sizeof(*fl), GFP_ATOMIC);
if (!fl)
return;
DBG("adding %u to free list\n", idx);
fl->index = idx;
list_add(&fl->list_entry, &a->free_list);
}
/* lock must be held */
static unsigned int pop_free_list_entry(struct re_auto_array *a) {
unsigned int ret;
struct re_auto_array_free_list *fl;
fl = list_first_entry(&a->free_list, struct re_auto_array_free_list, list_entry);
ret = fl->index;
list_del(&fl->list_entry);
kfree(fl);
DBG("popped %u from free list\n", ret);
return ret;
}
static void auto_array_free(struct re_auto_array *a) {
if (a->array)
kfree(a->array);
if (a->used_bitfield)
kfree(a->used_bitfield);
while (!list_empty(&a->free_list))
pop_free_list_entry(a);
}
static struct rtpengine_table *new_table(void) {
struct rtpengine_table *t;
unsigned int i;
DBG("Creating new table\n");
if (!try_module_get(THIS_MODULE))
return NULL;
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t) {
module_put(THIS_MODULE);
return NULL;
}
atomic_set(&t->refcnt, 1);
rwlock_init(&t->target_lock);
INIT_LIST_HEAD(&t->calls);
INIT_LIST_HEAD(&t->shm_list);
spin_lock_init(&t->shm_lock);
INIT_LIST_HEAD(&t->packet_streams);
INIT_LIST_HEAD(&t->play_streams);
t->id = -1;
_spin_lock_init(&t->player_lock);
for (i = 0; i < ARRAY_SIZE(t->calls_hash); i++) {
INIT_HLIST_HEAD(&t->calls_hash[i]);
spin_lock_init(&t->calls_hash_lock[i]);
}
for (i = 0; i < ARRAY_SIZE(t->streams_hash); i++) {
INIT_HLIST_HEAD(&t->streams_hash[i]);
spin_lock_init(&t->streams_hash_lock[i]);
}
return t;
}
static inline void __ref_get(void *p, atomic_t *refcnt) {
DBG("ref_get(%p) - refcnt is %u\n", p, atomic_read(refcnt));
atomic_inc(refcnt);
}
#define ref_get(o) __ref_get(o, &(o)->refcnt)
static inline struct proc_dir_entry *proc_mkdir_user(const char *name, umode_t mode,
struct proc_dir_entry *parent)
{
struct proc_dir_entry *ret;
ret = proc_mkdir_mode(name, mode, parent);
if (!ret)
return NULL;
proc_set_user(ret, proc_kuid, proc_kgid);
return ret;
}
static inline struct proc_dir_entry *proc_create_user(const char *name, umode_t mode,
struct proc_dir_entry *parent, const struct PROC_OP_STRUCT *ops,
void *ptr)
{
struct proc_dir_entry *ret;
ret = proc_create_data(name, mode, parent, ops, ptr);
if (!ret)
return NULL;
proc_set_user(ret, proc_kuid, proc_kgid);
return ret;
}
static int table_create_proc(struct rtpengine_table *t, uint32_t id) {
char num[10];
sprintf(num, "%u", id);
t->proc_root = proc_mkdir_user(num, 0555 & ~proc_mask, my_proc_root);
if (!t->proc_root)
return -1;
t->proc_status = proc_create_user("status", S_IFREG | 0444, t->proc_root, &proc_status_ops,
(void *) (unsigned long) id);
if (!t->proc_status)
return -1;
t->proc_control = proc_create_user("control", S_IFREG | 0660,
t->proc_root,
&proc_control_ops, (void *) (unsigned long) id);
if (!t->proc_control)
return -1;
t->proc_list = proc_create_user("list", S_IFREG | 0444, t->proc_root,
&proc_list_ops, (void *) (unsigned long) id);
if (!t->proc_list)
return -1;
t->proc_calls = proc_mkdir_user("calls", 0555, t->proc_root);
if (!t->proc_calls)
return -1;
return 0;
}
static struct rtpengine_table *new_table_link(uint32_t id) {
struct rtpengine_table *t;
unsigned long flags;
if (id >= MAX_ID)
return NULL;
t = new_table();
if (!t) {
printk(KERN_WARNING "xt_RTPENGINE out of memory\n");
return NULL;
}
write_lock_irqsave(&table_lock, flags);
if (table[id]) {
write_unlock_irqrestore(&table_lock, flags);
table_put(t);
printk(KERN_WARNING "xt_RTPENGINE duplicate ID %u\n", id);
return NULL;
}
ref_get(t);
table[id] = t;
t->id = id;
write_unlock_irqrestore(&table_lock, flags);
if (table_create_proc(t, id))
printk(KERN_WARNING "xt_RTPENGINE failed to create /proc entry for ID %u\n", id);
return t;
}
static void free_crypto_context(struct re_crypto_context *c) {
int i;
for (i = 0; i < ARRAY_SIZE(c->tfm); i++) {
if (c->tfm[i])
crypto_free_cipher(c->tfm[i]);
}
if (c->shash)
crypto_free_shash(c->shash);
if (c->aead)
crypto_free_aead(c->aead);
}
static void target_put(struct rtpengine_target *t) {
unsigned int i;
if (!t)
return;
if (!atomic_dec_and_test(&t->refcnt))
return;
DBG("Freeing target\n");
free_crypto_context(&t->decrypt_rtp);
free_crypto_context(&t->decrypt_rtcp);
if (t->outputs) {
for (i = 0; i < t->target.num_destinations; i++) {
free_crypto_context(&t->outputs[i].encrypt_rtp);
free_crypto_context(&t->outputs[i].encrypt_rtcp);
}
kfree(t->outputs);
}
kfree(t);
}
static void target_get(struct rtpengine_target *t) {
atomic_inc(&t->refcnt);
}
static void clear_proc(struct proc_dir_entry **e) {
struct proc_dir_entry *pde;
if (!e || !(pde = *e))
return;
proc_remove(pde);
*e = NULL;
}
static void __unref_play_stream(struct play_stream *s);
static void __unref_packet_stream(struct play_stream_packets *stream);
static void end_of_stream(struct play_stream *stream);
#define unref_play_stream(s) do { \
/* printk(KERN_WARNING "unref play stream %p (%i--) @ %s:%i\n", s, atomic_read(&(s)->refcnt), __FILE__, __LINE__); */ \
__unref_play_stream(s); \
} while (0)
#define ref_play_stream(s) do { \
/* printk(KERN_WARNING "ref play stream %p (%i++) @ %s:%i\n", s, atomic_read(&(s)->refcnt), __FILE__, __LINE__); */ \
atomic_inc(&(s)->refcnt); \
} while (0)
#define ref_packet_stream(s) do { \
/* printk(KERN_WARNING "ref packet stream %p (%i++) @ %s:%i\n", s, atomic_read(&(s)->refcnt), __FILE__, __LINE__); */ \
atomic_inc(&(s)->refcnt); \
} while (0)
#define unref_packet_stream(s) do { \
/* printk(KERN_WARNING "unref packet stream %p (%i--) @ %s:%i\n", s, atomic_read(&(s)->refcnt), __FILE__, __LINE__); */ \
__unref_packet_stream(s); \
} while (0)
static void clear_table_proc_files(struct rtpengine_table *t) {
clear_proc(&t->proc_status);
clear_proc(&t->proc_control);
clear_proc(&t->proc_list);
clear_proc(&t->proc_calls);
clear_proc(&t->proc_root);
}
static void clear_table_player(struct rtpengine_table *t) {
struct play_stream *stream, *ts;
struct play_stream_packets *packets, *tp;
unsigned int idx;
list_for_each_entry_safe(stream, ts, &t->play_streams, table_entry) {
_spin_lock(&stream->lock);
stream->table_id = -1;
idx = stream->idx;
_spin_unlock(&stream->lock);
_write_lock(&media_player_lock);
if (play_streams[idx] == stream) {
play_streams[idx] = NULL;
unref_play_stream(stream);
}
_write_unlock(&media_player_lock);
do_stop_stream(stream);
unref_play_stream(stream);
}
list_for_each_entry_safe(packets, tp, &t->packet_streams, table_entry) {
_write_lock(&packets->lock);
packets->table_id = -1;
idx = packets->idx;
_write_unlock(&packets->lock);
_write_lock(&media_player_lock);
if (stream_packets[idx] == packets) {
stream_packets[idx] = NULL;
unref_packet_stream(packets);
}
_write_unlock(&media_player_lock);
unref_packet_stream(packets);
}
}
static void table_put(struct rtpengine_table *t) {
int i, j, k;
struct re_dest_addr *rda;
struct re_bucket *b;
struct re_shm *shm;
if (!t)
return;
if (!atomic_dec_and_test(&t->refcnt))
return;
DBG("Freeing table\n");
for (k = 0; k < 256; k++) {
rda = t->dest_addr_hash.addrs[k];
if (!rda)
continue;
for (i = 0; i < 256; i++) {
b = rda->ports_hi[i];
if (!b)
continue;
for (j = 0; j < 256; j++) {
if (!b->ports_lo[j])
continue;
b->ports_lo[j]->table = -1;
target_put(b->ports_lo[j]);
b->ports_lo[j] = NULL;
}
kfree(b);
rda->ports_hi[i] = NULL;
}
kfree(rda);
t->dest_addr_hash.addrs[k] = NULL;
}
while (!list_empty(&t->shm_list)) {
shm = list_first_entry(&t->shm_list, struct re_shm, list_entry);
list_del_init(&shm->list_entry);
free_pages((unsigned long) shm->head, shm->order);
kfree(shm);
}
clear_table_proc_files(t);
clear_table_player(t);
kfree(t);
module_put(THIS_MODULE);
}
/* must be called lock-free */
static inline void free_packet(struct re_stream_packet *packet) {
if (packet->skbuf)
kfree_skb(packet->skbuf);
kfree(packet);
}
/* must be called lock-free */
static void clear_stream_packets(struct re_stream *stream) {
struct re_stream_packet *packet;
unsigned long flags;
LIST_HEAD(delete_list);
spin_lock_irqsave(&stream->packet_list_lock, flags);
while (!list_empty(&stream->packet_list)) {
DBG("clearing packet from queue\n");
packet = list_first_entry(&stream->packet_list, struct re_stream_packet, list_entry);
list_del(&packet->list_entry);
list_add(&packet->list_entry, &delete_list);
}
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
while (!list_empty(&delete_list)) {
packet = list_first_entry(&delete_list, struct re_stream_packet, list_entry);
list_del(&packet->list_entry);
free_packet(packet);
}
}
static void stream_put(struct re_stream *stream) {
DBG("stream_put(%p) - refcnt is %u\n",
stream,
stream ? atomic_read(&stream->refcnt) : (unsigned) -1);
if (!stream)
return;
if (!atomic_dec_and_test(&stream->refcnt)) {
/* if this is an open file being closed and there's a del_stream()
* waiting for us, we need to wake up the sleeping del_stream() */
wake_up_interruptible(&stream->close_wq);
return;
}
DBG("Freeing stream object\n");
clear_stream_packets(stream);
clear_proc(&stream->file);
if (stream->call)
call_put(stream->call);
kfree(stream);
}
static void call_put(struct re_call *call) {
DBG("call_put(%p) - refcnt is %u\n",
call,
call ? atomic_read(&call->refcnt) : (unsigned) -1);
if (!call)
return;
if (!atomic_dec_and_test(&call->refcnt))
return;
DBG("Freeing call object\n");
if (!list_empty(&call->streams))
panic("BUG! streams list not empty in call");
DBG("clearing call proc files\n");
clear_proc(&call->root);
kfree(call);
}
static int unlink_table(struct rtpengine_table *t) {
unsigned long flags;
struct re_call *call;
if (t->id >= MAX_ID)
return -EINVAL;
DBG("Unlinking table %u\n", t->id);
write_lock_irqsave(&table_lock, flags);
if (t->id >= MAX_ID || table[t->id] != t) {
write_unlock_irqrestore(&table_lock, flags);
return -EINVAL;
}
if (t->pid) {
write_unlock_irqrestore(&table_lock, flags);
return -EBUSY;
}
table[t->id] = NULL;
t->id = -1;
write_unlock_irqrestore(&table_lock, flags);
_w_lock(&calls.lock, flags);
while (!list_empty(&t->calls)) {
call = list_first_entry(&t->calls, struct re_call, table_entry);
_w_unlock(&calls.lock, flags);
del_call(call, t); /* removes it from this list */
_w_lock(&calls.lock, flags);
}
_w_unlock(&calls.lock, flags);
clear_table_proc_files(t);
table_put(t);
return 0;
}
static struct rtpengine_table *get_table(unsigned int id) {
struct rtpengine_table *t;
unsigned long flags;
if (id >= MAX_ID)
return NULL;
read_lock_irqsave(&table_lock, flags);
t = table[id];
if (t)
ref_get(t);
read_unlock_irqrestore(&table_lock, flags);
return t;
}
static ssize_t proc_status(struct file *f, char __user *b, size_t l, loff_t *o) {
struct inode *inode;
char buf[256];
struct rtpengine_table *t;
int len = 0;
unsigned long flags;
uint32_t id;
if (*o > 0)
return 0;
if (*o < 0)
return -EINVAL;
if (l < sizeof(buf))
return -EINVAL;
inode = f->f_path.dentry->d_inode;
id = (uint32_t) (unsigned long) PDE_DATA(inode);
t = get_table(id);
if (!t)
return -ENOENT;
read_lock_irqsave(&t->target_lock, flags);
len += sprintf(buf + len, "Refcount: %u\n", atomic_read(&t->refcnt) - 1);
len += sprintf(buf + len, "Control PID: %u\n", t->pid);
len += sprintf(buf + len, "Targets: %u\n", t->num_targets);
read_unlock_irqrestore(&t->target_lock, flags);
// unlocked/unsafe read
len += sprintf(buf + len, "Players: %u\n", t->num_play_streams);
len += sprintf(buf + len, "PStreams: %u\n", t->num_packet_streams);
table_put(t);
if (copy_to_user(b, buf, len))
return -EFAULT;
*o += len;
return len;
}
static int proc_main_list_open(struct inode *i, struct file *f) {
int err;
if ((err = proc_generic_open_modref(i, f)))
return err;
return seq_open(f, &proc_main_list_seq_ops);
}
static void *proc_main_list_start(struct seq_file *f, loff_t *o) {
if (!try_module_get(THIS_MODULE))
return NULL;
return proc_main_list_next(f, NULL, o);
}
static void proc_main_list_stop(struct seq_file *f, void *v) {
module_put(THIS_MODULE);
}
static void *proc_main_list_next(struct seq_file *f, void *v, loff_t *o) { /* v is invalid */
struct rtpengine_table *t = NULL;
uint32_t id;
if (*o < 0)
return NULL;
id = *o;
while (id < MAX_ID) {
t = get_table(id++);
if (!t)
continue;
break;
}
*o = id;
return t; /* might be NULL */
}
static int proc_main_list_show(struct seq_file *f, void *v) {
struct rtpengine_table *g = v;
seq_printf(f, "%u\n", g->id);
table_put(g);
return 0;
}
static inline unsigned char bitfield_next_slot(unsigned int slot) {
unsigned char c;
c = slot * (sizeof(unsigned long) * 8);
c += sizeof(unsigned long) * 8;
return c;
}
static inline unsigned int bitfield_slot(unsigned int i) {
return i / (sizeof(unsigned long) * 8);
}
static inline unsigned int bitfield_bit(unsigned int i) {
return i % (sizeof(unsigned long) * 8);
}
static inline int bitfield_set(unsigned long *bf, unsigned int i) {
unsigned int b, m;
unsigned long k;
b = bitfield_slot(i);
m = bitfield_bit(i);
k = 1UL << m;
if ((bf[b] & k))
return 0;
bf[b] |= k;
return 1;
}
static inline int bitfield_clear(unsigned long *bf, unsigned int i) {
unsigned int b, m;
unsigned long k;
b = bitfield_slot(i);
m = bitfield_bit(i);
k = 1UL << m;
if (!(bf[b] & k))
return 0;
bf[b] &= ~k;
return 1;
}
static inline void re_bitfield_set(struct re_bitfield *bf, unsigned char i) {
if (bitfield_set(bf->b, i))
bf->used++;
}
static inline void re_bitfield_clear(struct re_bitfield *bf, unsigned char i) {
if (bitfield_clear(bf->b, i))
bf->used--;
}
static inline struct rtpengine_target *find_next_target(struct rtpengine_table *t, int *addr_bucket,
int *port)
{
unsigned long flags;
struct re_dest_addr *rda;
struct re_bucket *b;
unsigned char hi, lo, ab;
unsigned int rda_b, hi_b, lo_b;
struct rtpengine_target *g;
if (*port < 0)
return NULL;
if (*port > 0xffff) {
*port = 0;
(*addr_bucket)++;
}
if (*addr_bucket < 0 || *addr_bucket > 255)
return NULL;
hi = (*port & 0xff00) >> 8;
lo = *port & 0xff;
ab = *addr_bucket;
read_lock_irqsave(&t->target_lock, flags);
for (;;) {
rda_b = bitfield_slot(ab);
if (!t->dest_addr_hash.addrs_bf.b[rda_b]) {
ab = bitfield_next_slot(rda_b);
hi = 0;
lo = 0;
goto next_rda;
}
rda = t->dest_addr_hash.addrs[ab];
if (!rda) {
ab++;
hi = 0;
lo = 0;
goto next_rda;
}
hi_b = bitfield_slot(hi);
if (!rda->ports_hi_bf.b[hi_b]) {
hi = bitfield_next_slot(hi_b);
lo = 0;
goto next_hi;
}
b = rda->ports_hi[hi];
if (!b) {
hi++;
lo = 0;
goto next_hi;
}
lo_b = bitfield_slot(lo);
if (!b->ports_lo_bf.b[lo_b]) {
lo = bitfield_next_slot(lo_b);
goto next_lo;
}
g = b->ports_lo[lo];
if (!g) {
lo++;
goto next_lo;
}
target_get(g);
break;
next_lo:
if (!lo)
hi++;
next_hi:
if (!hi && !lo)
ab++;
next_rda:
if (!ab && !hi && !lo)
break;
}
read_unlock_irqrestore(&t->target_lock, flags);
*addr_bucket = ab;
*port = (hi << 8) | lo;
return g;
}
static int proc_list_open(struct inode *i, struct file *f) {
int err;
struct seq_file *p;
uint32_t id;
struct rtpengine_table *t;
if ((err = proc_generic_open_modref(i, f)))
return err;
id = (uint32_t) (unsigned long) PDE_DATA(i);
t = get_table(id);
if (!t)
return -ENOENT;
table_put(t);
err = seq_open(f, &proc_list_seq_ops);
if (err)
return err;
p = f->private_data;
p->private = (void *) (unsigned long) id;
return 0;
}
static void *proc_list_start(struct seq_file *f, loff_t *o) {
return proc_list_next(f, NULL, o);
}
static void proc_list_stop(struct seq_file *f, void *v) {
}
static void *proc_list_next(struct seq_file *f, void *v, loff_t *o) {
uint32_t id = (uint32_t) (unsigned long) f->private;
struct rtpengine_table *t;
struct rtpengine_target *g;
int port, addr_bucket;
addr_bucket = ((int) *o) >> 17;
port = ((int) *o) & 0x1ffff;
t = get_table(id);
if (!t)
return NULL;
if (v) // this is a `next` call
port++;
g = find_next_target(t, &addr_bucket, &port);
*o = (addr_bucket << 17) | port;
table_put(t);
if (!g) // EOF
*o = 256 << 17;
return g;
}
static void seq_addr_print(struct seq_file *f, const struct re_address *a) {
if (!a->family)
return;
switch (a->family) {
case AF_INET:
seq_printf(f, "inet4 %u.%u.%u.%u:%u", a->u.u8[0], a->u.u8[1], a->u.u8[2],
a->u.u8[3], a->port);
break;
case AF_INET6:
seq_printf(f, "inet6 [%x:%x:%x:%x:%x:%x:%x:%x]:%u",
htons(a->u.u16[0]), htons(a->u.u16[1]),
htons(a->u.u16[2]), htons(a->u.u16[3]), htons(a->u.u16[4]), htons(a->u.u16[5]),
htons(a->u.u16[6]), htons(a->u.u16[7]), a->port);
break;
default:
seq_printf(f, "<unknown>\n");
break;
}
}
static void proc_list_addr_print(struct seq_file *f, const char *s, const struct re_address *a) {
if (!a->family)
return;
seq_printf(f, " %6s ", s);
seq_addr_print(f, a);
seq_printf(f, "\n");
}
static void proc_list_crypto_print(struct seq_file *f, struct re_crypto_context *c,
struct rtpengine_srtp *s, const char *label)
{
int hdr = 0;
int i;
if (c->cipher && c->cipher->id != REC_NULL) {
if (!hdr++)
seq_printf(f, " SRTP %s parameters:\n", label);
seq_printf(f, " cipher: %s\n", c->cipher->name ? : "<invalid>");
seq_printf(f, " master key: ");
for (i = 0; i < s->master_key_len; i++)
seq_printf(f, "%02x", s->master_key[i]);
seq_printf(f, "\n");
seq_printf(f, " master salt: ");
for (i = 0; i < sizeof(s->master_salt); i++)
seq_printf(f, "%02x", s->master_salt[i]);
seq_printf(f, "\n");
seq_printf(f, " session key: ");
for (i = 0; i < s->session_key_len; i++)
seq_printf(f, "%02x", c->session_key[i]);
seq_printf(f, "\n");
seq_printf(f, " session salt: ");
for (i = 0; i < sizeof(c->session_salt); i++)
seq_printf(f, "%02x", c->session_salt[i]);
seq_printf(f, "\n");
seq_printf(f, " session auth: ");
for (i = 0; i < sizeof(c->session_auth_key); i++)
seq_printf(f, "%02x", c->session_auth_key[i]);
seq_printf(f, "\n");
if (s->mki_len)
seq_printf(f, " MKI: length %u, %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x...\n",
s->mki_len,
s->mki[0], s->mki[1], s->mki[2], s->mki[3],
s->mki[4], s->mki[5], s->mki[6], s->mki[7]);
}
if (c->hmac && c->hmac->id != REH_NULL) {
if (!hdr++)
seq_printf(f, " SRTP %s parameters:\n", label);
seq_printf(f, " HMAC: %s\n", c->hmac->name ? : "<invalid>");
seq_printf(f, " auth tag length: %u\n", s->rtp_auth_tag_len);
}
}
static int proc_list_show(struct seq_file *f, void *v) {
struct rtpengine_target *g = v;
unsigned int i, j;
unsigned long flags;
seq_printf(f, "local ");
seq_addr_print(f, &g->target.local);
seq_printf(f, "\n");
// all outputs filled?
_r_lock(&g->outputs_lock, flags);
if (g->outputs_unfilled) {
unsigned int uf = g->outputs_unfilled;
_r_unlock(&g->outputs_lock, flags);
seq_printf(f, " outputs not fully filled (%u missing)\n", uf);
goto out;
}
_r_unlock(&g->outputs_lock, flags);
proc_list_addr_print(f, "expect", &g->target.expected_src);
if (g->target.src_mismatch > 0 && g->target.src_mismatch <= ARRAY_SIZE(re_msm_strings))
seq_printf(f, " src mismatch action: %s\n", re_msm_strings[g->target.src_mismatch]);
seq_printf(f, " stats: %20llu bytes, %20llu packets, %20llu errors\n",
(unsigned long long) atomic64_read(&g->target.stats->bytes),
(unsigned long long) atomic64_read(&g->target.stats->packets),
(unsigned long long) atomic64_read(&g->target.stats->errors));
for (i = 0; i < g->target.num_payload_types; i++) {
seq_printf(f, " RTP payload type %3u: %20llu bytes, %20llu packets\n",
g->target.pt_stats[i]->payload_type,
(unsigned long long) atomic64_read(&g->target.pt_stats[i]->bytes),
(unsigned long long) atomic64_read(&g->target.pt_stats[i]->packets));
}
seq_printf(f, " last packet: %lli", (long long) atomic64_read(&g->target.stats->last_packet));
seq_printf(f, " SSRC in:");
for (i = 0; i < ARRAY_SIZE(g->target.ssrc); i++) {
if (!g->target.ssrc[i] || !g->target.ssrc_stats[i])
break;
seq_printf(f, "%s %lx [seq %u/%u]",
(i == 0) ? "" : ",",
(unsigned long) ntohl(g->target.ssrc[i]),
atomic_read(&g->target.ssrc_stats[i]->ext_seq),
atomic_read(&g->target.ssrc_stats[i]->rtcp_seq));
}
seq_printf(f, "\n");
proc_list_crypto_print(f, &g->decrypt_rtp, &g->target.decrypt, "decryption");
seq_printf(f, " options:");
if (g->target.rtp)
seq_printf(f, " RTP");
if (g->target.pt_filter)
seq_printf(f, " PT-filter");
if (g->target.rtp_only)
seq_printf(f, " RTP-only");
if (g->target.rtcp)
seq_printf(f, " RTCP");
if (g->target.rtcp_mux)
seq_printf(f, " RTCP-mux");
if (g->target.dtls)
seq_printf(f, " DTLS");
if (g->target.stun)
seq_printf(f, " STUN");
if (g->target.non_forwarding)
seq_printf(f, " non-forwarding");
if (g->target.blackhole)
seq_printf(f, " blackhole");
if (g->target.rtp_stats)
seq_printf(f, " RTP-stats");
if (g->target.track_ssrc)
seq_printf(f, " SSRC-tracking");
if (g->target.do_intercept)
seq_printf(f, " intercept");
if (g->target.rtcp_fw)
seq_printf(f, " forward-RTCP");
if (g->target.rtcp_fb_fw)
seq_printf(f, " forward-RTCP-FB");
seq_printf(f, "\n");
for (i = 0; i < g->target.num_destinations; i++) {
struct rtpengine_output *o = &g->outputs[i];
if (i < g->num_rtp_destinations)
seq_printf(f, " output #%u\n", i);
else
seq_printf(f, " output #%u (RTCP)\n", i);
proc_list_addr_print(f, "src", &o->output.src_addr);
proc_list_addr_print(f, "dst", &o->output.dst_addr);
seq_printf(f, " stats: %20llu bytes, %20llu packets, %20llu errors\n",
(unsigned long long) atomic64_read(&o->output.stats->bytes),
(unsigned long long) atomic64_read(&o->output.stats->packets),
(unsigned long long) atomic64_read(&o->output.stats->errors));
seq_printf(f, " SSRC out:");
for (j = 0; j < ARRAY_SIZE(o->output.ssrc_out); j++) {
if (!o->output.ssrc_stats[j])
break;
seq_printf(f, "%s %lx [seq %u+%u/%u]",
(j == 0) ? "" : ",",
(unsigned long) ntohl(o->output.ssrc_out[j]),
atomic_read(&o->output.ssrc_stats[j]->ext_seq),
(unsigned int) o->output.seq_offset[j],
atomic_read(&o->output.ssrc_stats[j]->rtcp_seq));
}
seq_printf(f, "\n");
for (j = 0; j < g->target.num_payload_types; j++) {
if (o->output.pt_output[j].replace_pattern_len || o->output.pt_output[j].min_payload_len)
seq_printf(f, " RTP payload type %3u: "
"%u bytes replacement payload, min payload len %u\n",
g->target.pt_stats[j]->payload_type,
o->output.pt_output[j].replace_pattern_len,
o->output.pt_output[j].min_payload_len);
}
proc_list_crypto_print(f, &o->encrypt_rtp, &o->output.encrypt, "encryption");
}
out:
target_put(g);
return 0;
}
static unsigned int re_address_hash(const struct re_address *a) {
uint32_t ret = 0;
if (!a)
goto out;
ret += a->family;
switch (a->family) {
case AF_INET:
ret += a->u.ipv4;
break;
case AF_INET6:
ret += a->u.u32[0];
ret += a->u.u32[1];
ret += a->u.u32[2];
ret += a->u.u32[3];
break;
default:
goto out;
}
ret = (ret & 0xffff) ^ ((ret & 0xffff0000) >> 16);
ret = (ret & 0xff) ^ ((ret & 0xff00) >> 8);
out:
return ret;
}
static int re_address_match(const struct re_address *a, const struct re_address *b) {
if (!a || !b)
return 0;
if (a->family != b->family)
return 0;
switch (a->family) {
case AF_INET:
if (a->u.ipv4 == b->u.ipv4)
return 1;
break;
case AF_INET6:
if (!memcmp(a->u.ipv6, b->u.ipv6, sizeof(a->u.ipv6)))
return 1;
break;
default:
return 0;
}
return 0;
}
static struct re_dest_addr *find_dest_addr(const struct re_dest_addr_hash *h, const struct re_address *local) {
unsigned int rda_hash, i;
struct re_dest_addr *rda;
i = rda_hash = re_address_hash(local);
while (1) {
rda = h->addrs[i];
if (!rda)
return NULL;
if (re_address_match(local, &rda->destination))
return rda;
i++;
if (i >= 256)
i = 0;
if (i == rda_hash)
return NULL;
}
}
// removes a target from the table and returns it
static struct rtpengine_target *table_steal_target(struct rtpengine_table *t, const struct re_address *local) {
unsigned char hi, lo;
struct re_dest_addr *rda;
struct re_bucket *b;
struct rtpengine_target *g = NULL;
unsigned long flags;
if (!local || !is_valid_address(local))
return ERR_PTR(-EINVAL);
hi = (local->port & 0xff00) >> 8;
lo = local->port & 0xff;
write_lock_irqsave(&t->target_lock, flags);
rda = find_dest_addr(&t->dest_addr_hash, local);
if (!rda)
goto out;
b = rda->ports_hi[hi];
if (!b)
goto out;
g = b->ports_lo[lo];
if (!g)
goto out;
b->ports_lo[lo] = NULL;
re_bitfield_clear(&b->ports_lo_bf, lo);
t->num_targets--;
if (!b->ports_lo_bf.used) {
rda->ports_hi[hi] = NULL;
re_bitfield_clear(&rda->ports_hi_bf, hi);
}
else
b = NULL;
/* not freeing or NULLing the re_dest_addr due to hash collision logic */
out:
write_unlock_irqrestore(&t->target_lock, flags);
if (!g)
return ERR_PTR(-ENOENT);
if (b)
kfree(b);
return g;
}
// removes target from table and returns the stats before releasing the target
static int table_del_target(struct rtpengine_table *t, const struct re_address *local) {
struct rtpengine_target *g = table_steal_target(t, local);
if (IS_ERR(g))
return PTR_ERR(g);
target_put(g);
return 0;
}
static int is_valid_address(const struct re_address *rea) {
switch (rea->family) {
case AF_INET:
if (!rea->u.ipv4)
return 0;
break;
case AF_INET6:
if (!rea->u.u32[0] && !rea->u.u32[1] && !rea->u.u32[2] && !rea->u.u32[3])
return 0;
break;
default:
return 0;
}
if (!rea->port)
return 0;
return 1;
}
static void vm_mmap_close(struct vm_area_struct *vma) {
}
static const struct vm_operations_struct vm_mmap_ops = {
.close = vm_mmap_close,
};
static void *shm_map_resolve(void *p, size_t size) {
struct vm_area_struct *vma;
// XXX is there a better way to map this to the kernel address?
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,14,0)
vma = vma_lookup(current->mm, (unsigned long) p);
#else
vma = find_vma(current->mm, (unsigned long) p);
if (vma && (unsigned long) p < vma->vm_start)
vma = NULL;
#endif
if (!vma)
return NULL;
if (!vma->vm_private_data)
return NULL;
if ((unsigned long) p + size > vma->vm_end || (unsigned long) p + size < vma->vm_start)
return NULL;
if (vma->vm_ops != &vm_mmap_ops)
return NULL;
return vma->vm_private_data + ((unsigned long) p - (unsigned long) vma->vm_start);
}
static int validate_srtp(const struct rtpengine_srtp *s) {
if (s->cipher <= REC_INVALID)
return -1;
if (s->cipher >= __REC_LAST)
return -1;
if (s->hmac <= REH_INVALID)
return -1;
if (s->hmac >= __REH_LAST)
return -1;
if (s->rtp_auth_tag_len > 20)
return -1;
if (s->mki_len > sizeof(s->mki))
return -1;
return 0;
}
/* XXX shared code */
static void aes_ctr(unsigned char *out, const unsigned char *in, size_t in_len,
struct crypto_cipher *tfm, const unsigned char *iv)
{
unsigned char ivx[16];
unsigned char key_block[16];
unsigned char *p, *q;
size_t left;
int i;
uint64_t *pi, *qi, *ki;
if (!tfm)
return;
memcpy(ivx, iv, 16);
pi = (void *) in;
qi = (void *) out;
ki = (void *) key_block;
left = in_len;
while (left) {
crypto_cipher_encrypt_one(tfm, key_block, ivx);
if (unlikely(left < 16)) {
p = (void *) pi;
q = (void *) qi;
for (i = 0; i < 16; i++) {
*q++ = *p++ ^ key_block[i];
left--;
if (!left)
goto done;
}
panic("BUG!");
}
*qi++ = *pi++ ^ ki[0];
*qi++ = *pi++ ^ ki[1];
left -= 16;
for (i = 15; i >= 0; i--) {
ivx[i]++;
if (likely(ivx[i]))
break;
}
}
done:
;
}
static void aes_f8(unsigned char *in_out, size_t in_len,
struct crypto_cipher *tfm, struct crypto_cipher *iv_tfm,
const unsigned char *iv)
{
unsigned char key_block[16], last_key_block[16], /* S(j), S(j-1) */
ivx[16], /* IV' */
x[16];
size_t i, left;
uint32_t j;
unsigned char *p;
uint64_t *pi, *ki, *lki, *xi;
uint32_t *xu;
crypto_cipher_encrypt_one(iv_tfm, ivx, iv);
pi = (void *) in_out;
ki = (void *) key_block;
lki = (void *) last_key_block;
xi = (void *) x;
xu = (void *) x;
left = in_len;
j = 0;
memset(last_key_block, 0, sizeof(last_key_block));
while (left) {
/* S(j) = E(k_e, IV' XOR j XOR S(j-1)) */
memcpy(x, ivx, 16);
xu[3] ^= htonl(j);
xi[0] ^= lki[0];
xi[1] ^= lki[1];
crypto_cipher_encrypt_one(tfm, key_block, x);
if (unlikely(left < 16)) {
p = (void *) pi;
for (i = 0; i < 16; i++) {
*p++ ^= key_block[i];
left--;
if (!left)
goto done;
}
panic("BUG!");
}
*pi++ ^= ki[0];
*pi++ ^= ki[1];
left -= 16;
if (!left)
break;
j++;
memcpy(last_key_block, key_block, 16);
}
done:
;
}
static int aes_ctr_128_no_ctx(unsigned char *out, const char *in, int in_len,
const unsigned char *key, unsigned int key_len, const unsigned char *iv)
{
struct crypto_cipher *tfm;
tfm = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
crypto_cipher_setkey(tfm, key, key_len);
aes_ctr(out, in, in_len, tfm, iv);
crypto_free_cipher(tfm);
return 0;
}
static int prf_n(unsigned char *out, int len, const unsigned char *key, unsigned int key_len, const unsigned char *x) {
unsigned char iv[16];
unsigned char o[32];
unsigned char in[32];
int in_len, ret;
memcpy(iv, x, 14);
iv[14] = iv[15] = 0;
in_len = len > 16 ? 32 : 16;
memset(in, 0, in_len);
ret = aes_ctr_128_no_ctx(o, in, in_len, key, key_len, iv);
if (ret)
return ret;
memcpy(out, o, len);
return 0;
}
static int gen_session_key(unsigned char *out, int len, const struct rtpengine_srtp *s, unsigned char label,
unsigned int index_len)
{
unsigned char key_id[7];
unsigned char x[14];
int i, ret;
memset(key_id, 0, sizeof(key_id));
key_id[0] = label;
memcpy(x, s->master_salt, s->master_salt_len);
// AEAD uses 12 bytes master salt; pad on the right to get 14
// Errata: https://www.rfc-editor.org/errata_search.php?rfc=7714
if (s->master_salt_len == 12)
x[12] = x[13] = '\x00';
for (i = 13 - index_len; i < 14; i++)
x[i] = key_id[i - (13 - index_len)] ^ x[i];
ret = prf_n(out, len, s->master_key, s->master_key_len, x);
if (ret)
return ret;
return 0;
}
static int aes_f8_session_key_init(struct re_crypto_context *c, const struct rtpengine_srtp *s) {
unsigned char m[16];
int i, ret;
/* m = k_s || 0x555..5 */
memcpy(m, c->session_salt, 14);
m[14] = m[15] = 0x55;
/* IV' = E(k_e XOR m, IV) */
for (i = 0; i < 16; i++)
m[i] ^= c->session_key[i];
c->tfm[1] = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(c->tfm[1])) {
ret = PTR_ERR(c->tfm[1]);
c->tfm[1] = NULL;
goto error;
}
crypto_cipher_setkey(c->tfm[1], m, 16);
return 0;
error:
return ret;
}
static int gen_session_keys(struct re_crypto_context *c, const struct rtpengine_srtp *s, unsigned int label_offset,
unsigned int index_len)
{
int ret;
const char *err;
if (s->cipher == REC_NULL && s->hmac == REH_NULL)
return 0;
err = "failed to generate session key";
ret = gen_session_key(c->session_key, s->session_key_len, s, 0x00 + label_offset, index_len);
if (ret)
goto error;
ret = gen_session_key(c->session_auth_key, 20, s, 0x01 + label_offset, index_len); // XXX fixed length auth key
if (ret)
goto error;
ret = gen_session_key(c->session_salt, s->session_salt_len, s, 0x02 + label_offset, index_len);
if (ret)
goto error;
if (c->cipher->tfm_name) {
err = "failed to load cipher";
c->tfm[0] = crypto_alloc_cipher(c->cipher->tfm_name, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(c->tfm[0])) {
ret = PTR_ERR(c->tfm[0]);
c->tfm[0] = NULL;
goto error;
}
ret = crypto_cipher_setkey(c->tfm[0], c->session_key, s->session_key_len);
if (ret)
goto error;
}
if (c->cipher->aead_name) {
err = "failed to load AEAD";
c->aead = crypto_alloc_aead(c->cipher->aead_name, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(c->aead)) {
ret = PTR_ERR(c->aead);
c->aead = NULL;
goto error;
}
ret = -EINVAL;
if (crypto_aead_ivsize(c->aead) != 12)
goto error;
ret = crypto_aead_setkey(c->aead, c->session_key, s->session_key_len);
if (ret)
goto error;
ret = crypto_aead_setauthsize(c->aead, 16);
if (ret)
goto error;
}
if (c->cipher->session_key_init) {
ret = c->cipher->session_key_init(c, s);
if (ret)
goto error;
}
if (c->hmac->tfm_name) {
err = "failed to load HMAC";
c->shash = crypto_alloc_shash(c->hmac->tfm_name, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(c->shash)) {
ret = PTR_ERR(c->shash);
c->shash = NULL;
goto error;
}
ret = crypto_shash_setkey(c->shash, c->session_auth_key, 20);
if (ret)
goto error;
}
switch(s->master_key_len) {
case 16:
DBG("master key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
s->master_key[0], s->master_key[1], s->master_key[2], s->master_key[3],
s->master_key[4], s->master_key[5], s->master_key[6], s->master_key[7],
s->master_key[8], s->master_key[9], s->master_key[10], s->master_key[11],
s->master_key[12], s->master_key[13], s->master_key[14], s->master_key[15]);
break;
case 24:
DBG("master key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
s->master_key[0], s->master_key[1], s->master_key[2], s->master_key[3],
s->master_key[4], s->master_key[5], s->master_key[6], s->master_key[7],
s->master_key[8], s->master_key[9], s->master_key[10], s->master_key[11],
s->master_key[12], s->master_key[13], s->master_key[14], s->master_key[15],
s->master_key[16], s->master_key[17], s->master_key[18], s->master_key[19],
s->master_key[20], s->master_key[21], s->master_key[22], s->master_key[23]);
break;
case 32:
DBG("master key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
s->master_key[0], s->master_key[1], s->master_key[2], s->master_key[3],
s->master_key[4], s->master_key[5], s->master_key[6], s->master_key[7],
s->master_key[8], s->master_key[9], s->master_key[10], s->master_key[11],
s->master_key[12], s->master_key[13], s->master_key[14], s->master_key[15],
s->master_key[16], s->master_key[17], s->master_key[18], s->master_key[19],
s->master_key[20], s->master_key[21], s->master_key[22], s->master_key[23],
s->master_key[24], s->master_key[25], s->master_key[26], s->master_key[27],
s->master_key[28], s->master_key[29], s->master_key[30], s->master_key[31]);
break;
}
DBG("master salt %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
s->master_salt[0], s->master_salt[1], s->master_salt[2], s->master_salt[3],
s->master_salt[4], s->master_salt[5], s->master_salt[6], s->master_salt[7],
s->master_salt[8], s->master_salt[9], s->master_salt[10], s->master_salt[11],
s->master_salt[12], s->master_salt[13]);
switch(s->session_key_len) {
case 16:
DBG("session key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
c->session_key[0], c->session_key[1], c->session_key[2], c->session_key[3],
c->session_key[4], c->session_key[5], c->session_key[6], c->session_key[7],
c->session_key[8], c->session_key[9], c->session_key[10], c->session_key[11],
c->session_key[12], c->session_key[13], c->session_key[14], c->session_key[15]);
break;
case 24:
DBG("session key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
c->session_key[0], c->session_key[1], c->session_key[2], c->session_key[3],
c->session_key[4], c->session_key[5], c->session_key[6], c->session_key[7],
c->session_key[8], c->session_key[9], c->session_key[10], c->session_key[11],
c->session_key[12], c->session_key[13], c->session_key[14], c->session_key[15],
c->session_key[16], c->session_key[17], c->session_key[18], c->session_key[19],
c->session_key[20], c->session_key[21], c->session_key[22], c->session_key[23]);
break;
case 32:
DBG("session key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
c->session_key[0], c->session_key[1], c->session_key[2], c->session_key[3],
c->session_key[4], c->session_key[5], c->session_key[6], c->session_key[7],
c->session_key[8], c->session_key[9], c->session_key[10], c->session_key[11],
c->session_key[12], c->session_key[13], c->session_key[14], c->session_key[15],
c->session_key[16], c->session_key[17], c->session_key[18], c->session_key[19],
c->session_key[20], c->session_key[21], c->session_key[22], c->session_key[23],
c->session_key[24], c->session_key[25], c->session_key[26], c->session_key[27],
c->session_key[28], c->session_key[29], c->session_key[30], c->session_key[31]);
break;
}
DBG("session salt %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
c->session_salt[0], c->session_salt[1], c->session_salt[2], c->session_salt[3],
c->session_salt[4], c->session_salt[5], c->session_salt[6], c->session_salt[7],
c->session_salt[8], c->session_salt[9], c->session_salt[10], c->session_salt[11],
c->session_salt[12], c->session_salt[13]);
DBG("session auth key %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
c->session_auth_key[0], c->session_auth_key[1], c->session_auth_key[2], c->session_auth_key[3],
c->session_auth_key[4], c->session_auth_key[5], c->session_auth_key[6], c->session_auth_key[7],
c->session_auth_key[8], c->session_auth_key[9], c->session_auth_key[10], c->session_auth_key[11],
c->session_auth_key[12], c->session_auth_key[13], c->session_auth_key[14], c->session_auth_key[15],
c->session_auth_key[16], c->session_auth_key[17], c->session_auth_key[18], c->session_auth_key[19]);
return 0;
error:
free_crypto_context(c);
printk(KERN_ERR "Failed to generate session keys: %s\n", err);
return ret;
}
static int gen_rtp_session_keys(struct re_crypto_context *c, const struct rtpengine_srtp *s) {
return gen_session_keys(c, s, 0, 6);
}
static int gen_rtcp_session_keys(struct re_crypto_context *c, const struct rtpengine_srtp *s) {
return gen_session_keys(c, s, 3, SRTCP_R_LENGTH);
}
static void crypto_context_init(struct re_crypto_context *c, const struct rtpengine_srtp *s) {
c->cipher = &re_ciphers[s->cipher];
c->hmac = &re_hmacs[s->hmac];
}
static int table_new_target(struct rtpengine_table *t, struct rtpengine_target_info *i) {
unsigned char hi, lo;
unsigned int rda_hash, rh_it;
struct rtpengine_target *g;
struct re_dest_addr *rda;
struct re_bucket *b, *ba = NULL;
struct rtpengine_target *og = NULL;
int err;
unsigned long flags;
unsigned int u;
struct interface_stats_block *iface_stats;
struct stream_stats *stats;
struct rtp_stats *pt_stats[RTPE_NUM_PAYLOAD_TYPES];
struct ssrc_stats *ssrc_stats[RTPE_NUM_SSRC_TRACKING];
/* validation */
if (!t->rtpe_stats)
return -EIO;
if (!is_valid_address(&i->local))
return -EINVAL;
if (i->num_destinations > RTPE_MAX_FORWARD_DESTINATIONS)
return -EINVAL;
if (i->num_rtcp_destinations > i->num_destinations)
return -EINVAL;
if (i->num_payload_types > RTPE_NUM_PAYLOAD_TYPES)
return -EINVAL;
if (!i->non_forwarding) {
if (!i->num_destinations)
return -EINVAL;
}
else {
if (i->num_destinations)
return -EINVAL;
}
if (validate_srtp(&i->decrypt))
return -EINVAL;
iface_stats = shm_map_resolve(i->iface_stats, sizeof(*iface_stats));
if (!iface_stats)
return -EFAULT;
stats = shm_map_resolve(i->stats, sizeof(*stats));
if (!stats)
return -EFAULT;
for (u = 0; u < i->num_payload_types; u++) {
pt_stats[u] = shm_map_resolve(i->pt_stats[u], sizeof(*pt_stats[u]));
if (!pt_stats[u])
return -EFAULT;
}
for (u = 0; u < RTPE_NUM_SSRC_TRACKING; u++) {
if (!i->ssrc[u])
break;
if (!i->ssrc_stats[u])
return -EFAULT;
ssrc_stats[u] = shm_map_resolve(i->ssrc_stats[u], sizeof(*ssrc_stats[u]));
if (!ssrc_stats[u])
return -EFAULT;
}
DBG("Creating new target\n");
/* initializing */
err = -ENOMEM;
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
goto fail1;
g->table = t->id;
atomic_set(&g->refcnt, 1);
spin_lock_init(&g->decrypt_rtp.lock);
spin_lock_init(&g->decrypt_rtcp.lock);
memcpy(&g->target, i, sizeof(*i));
crypto_context_init(&g->decrypt_rtp, &g->target.decrypt);
crypto_context_init(&g->decrypt_rtcp, &g->target.decrypt);
spin_lock_init(&g->ssrc_stats_lock);
for (u = 0; u < RTPE_NUM_SSRC_TRACKING; u++)
g->target.ssrc_stats[u] = ssrc_stats[u];
rwlock_init(&g->outputs_lock);
g->target.iface_stats = iface_stats;
g->target.stats = stats;
for (u = 0; u < i->num_payload_types; u++)
g->target.pt_stats[u] = pt_stats[u];
if (i->num_destinations) {
err = -ENOMEM;
g->outputs = kzalloc(sizeof(*g->outputs) * i->num_destinations, GFP_KERNEL);
if (!g->outputs)
goto fail2;
g->outputs_unfilled = i->num_destinations;
g->num_rtp_destinations = i->num_destinations - i->num_rtcp_destinations;
}
err = gen_rtp_session_keys(&g->decrypt_rtp, &g->target.decrypt);
if (err)
goto fail2;
err = gen_rtcp_session_keys(&g->decrypt_rtcp, &g->target.decrypt);
if (err)
goto fail2;
/* find or allocate re_dest_addr */
rda_hash = re_address_hash(&i->local);
hi = (i->local.port & 0xff00) >> 8;
lo = i->local.port & 0xff;
retry:
rh_it = rda_hash;
write_lock_irqsave(&t->target_lock, flags);
rda = t->dest_addr_hash.addrs[rh_it];
while (rda) {
if (re_address_match(&rda->destination, &i->local))
goto got_rda;
rh_it++;
if (rh_it >= 256)
rh_it = 0;
err = -ENXIO;
if (rh_it == rda_hash)
goto fail4;
rda = t->dest_addr_hash.addrs[rh_it];
}
write_unlock_irqrestore(&t->target_lock, flags);
rda = kzalloc(sizeof(*rda), GFP_KERNEL);
err = -ENOMEM;
if (!rda)
goto fail2;
memcpy(&rda->destination, &i->local, sizeof(rda->destination));
write_lock_irqsave(&t->target_lock, flags);
if (t->dest_addr_hash.addrs[rh_it]) {
write_unlock_irqrestore(&t->target_lock, flags);
kfree(rda);
goto retry;
}
t->dest_addr_hash.addrs[rh_it] = rda;
re_bitfield_set(&t->dest_addr_hash.addrs_bf, rh_it);
got_rda:
/* find or allocate re_bucket */
if ((b = rda->ports_hi[hi]))
goto got_bucket;
write_unlock_irqrestore(&t->target_lock, flags);
b = kzalloc(sizeof(*b), GFP_KERNEL);
err = -ENOMEM;
if (!b)
goto fail2;
write_lock_irqsave(&t->target_lock, flags);
if (!rda->ports_hi[hi]) {
rda->ports_hi[hi] = b;
re_bitfield_set(&rda->ports_hi_bf, hi);
}
else {
ba = b;
b = rda->ports_hi[hi];
}
got_bucket:
err = -EEXIST;
if (b->ports_lo[lo])
goto fail4;
re_bitfield_set(&b->ports_lo_bf, lo);
t->num_targets++;
b->ports_lo[lo] = g;
g = NULL;
write_unlock_irqrestore(&t->target_lock, flags);
if (ba)
kfree(ba);
if (og)
target_put(og);
return 0;
fail4:
write_unlock_irqrestore(&t->target_lock, flags);
if (ba)
kfree(ba);
fail2:
if (g->outputs)
kfree(g->outputs);
kfree(g);
fail1:
return err;
}
static int table_add_destination(struct rtpengine_table *t, struct rtpengine_destination_info *i) {
unsigned long flags;
int err;
struct rtpengine_target *g;
struct interface_stats_block *iface_stats;
struct stream_stats *stats;
struct ssrc_stats *ssrc_stats[RTPE_NUM_SSRC_TRACKING];
unsigned int u;
// validate input
if (!is_valid_address(&i->output.src_addr))
return -EINVAL;
if (!is_valid_address(&i->output.dst_addr))
return -EINVAL;
if (i->output.src_addr.family != i->output.dst_addr.family)
return -EINVAL;
if (validate_srtp(&i->output.encrypt))
return -EINVAL;
iface_stats = shm_map_resolve(i->output.iface_stats, sizeof(*iface_stats));
if (!iface_stats)
return -EFAULT;
stats = shm_map_resolve(i->output.stats, sizeof(*stats));
if (!stats)
return -EFAULT;
for (u = 0; u < RTPE_NUM_SSRC_TRACKING; u++) {
// XXX order expected to be the same as input target
// XXX validate if target->ssrc[u] is set?
if (!i->output.ssrc_stats[u])
break;
ssrc_stats[u] = shm_map_resolve(i->output.ssrc_stats[u], sizeof(*ssrc_stats[u]));
if (!ssrc_stats[u])
return -EFAULT;
}
g = get_target(t, &i->local);
if (!g)
return -ENOENT;
// ready to fill in
_w_lock(&g->outputs_lock, flags);
err = -EBUSY;
if (!g->outputs_unfilled)
goto out;
// out of range entry?
err = -ERANGE;
if (i->num >= g->target.num_destinations)
goto out;
// already filled?
err = -EEXIST;
if (g->outputs[i->num].output.src_addr.family)
goto out;
g->outputs[i->num].output = i->output;
g->outputs[i->num].output.iface_stats = iface_stats;
g->outputs[i->num].output.stats = stats;
for (u = 0; u < RTPE_NUM_SSRC_TRACKING; u++)
g->outputs[i->num].output.ssrc_stats[u] = ssrc_stats[u];
// init crypto stuff lock free: the "output" is already filled so we
// know it's there, but outputs_unfilled hasn't been decreased yet, so
// this won't be used until we do, which makes it safe to do it lock
// free
_w_unlock(&g->outputs_lock, flags);
spin_lock_init(&g->outputs[i->num].encrypt_rtp.lock);
spin_lock_init(&g->outputs[i->num].encrypt_rtcp.lock);
crypto_context_init(&g->outputs[i->num].encrypt_rtp, &i->output.encrypt);
crypto_context_init(&g->outputs[i->num].encrypt_rtcp, &i->output.encrypt);
err = gen_rtp_session_keys(&g->outputs[i->num].encrypt_rtp, &i->output.encrypt);
if (!err)
err = gen_rtcp_session_keys(&g->outputs[i->num].encrypt_rtcp, &i->output.encrypt);
// re-acquire lock and finish up: decreasing outputs_unfillled to zero
// makes this usable
_w_lock(&g->outputs_lock, flags);
if (err)
goto out;
g->outputs_unfilled--;
err = 0;
out:
_w_unlock(&g->outputs_lock, flags);
target_put(g);
return err;
}
static struct rtpengine_target *get_target(struct rtpengine_table *t, const struct re_address *local) {
unsigned char hi, lo;
struct re_dest_addr *rda;
struct rtpengine_target *r;
unsigned long flags;
if (!t)
return NULL;
if (!local)
return NULL;
hi = (local->port & 0xff00) >> 8;
lo = local->port & 0xff;
read_lock_irqsave(&t->target_lock, flags);
rda = find_dest_addr(&t->dest_addr_hash, local);
r = rda ? (rda->ports_hi[hi] ? rda->ports_hi[hi]->ports_lo[lo] : NULL) : NULL;
if (r)
target_get(r);
read_unlock_irqrestore(&t->target_lock, flags);
return r;
}
static int proc_generic_open_modref(struct inode *inode, struct file *file) {
if (!try_module_get(THIS_MODULE))
return -ENXIO;
return 0;
}
static int proc_generic_open_stream_modref(struct inode *inode, struct file *file) {
if (!try_module_get(THIS_MODULE))
return -ENXIO;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,1,0)
return stream_open(inode, file);
#else
return 0;
#endif
}
static int proc_generic_close_modref(struct inode *inode, struct file *file) {
module_put(THIS_MODULE);
return 0;
}
static int proc_generic_seqrelease_modref(struct inode *inode, struct file *file) {
proc_generic_close_modref(inode, file);
return seq_release(inode, file);
}
static ssize_t proc_main_control_write(struct file *file, const char __user *buf, size_t buflen, loff_t *off) {
char b[30];
unsigned long id;
char *endp;
struct rtpengine_table *t;
int err;
if (buflen < 6 || buflen > 20)
return -EINVAL;
if (copy_from_user(&b, buf, buflen))
return -EFAULT;
if (!strncmp(b, "add ", 4)) {
id = simple_strtoul(b + 4, &endp, 10);
if (endp == b + 4)
return -EINVAL;
if (id >= MAX_ID)
return -EINVAL;
t = new_table_link((uint32_t) id);
if (!t)
return -EEXIST;
table_put(t);
t = NULL;
}
else if (!strncmp(b, "del ", 4)) {
id = simple_strtoul(b + 4, &endp, 10);
if (endp == b + 4)
return -EINVAL;
if (id >= MAX_ID)
return -EINVAL;
t = get_table((uint32_t) id);
if (!t)
return -ENOENT;
err = unlink_table(t);
table_put(t);
t = NULL;
if (err)
return err;
}
else
return -EINVAL;
return buflen;
}
static int proc_control_mmap(struct file *file, struct vm_area_struct *vma) {
size_t size, order;
unsigned long pfn;
struct page *page;
void *pages;
uint32_t id;
struct rtpengine_table *t;
int ret;
struct re_shm *shm;
struct inode *inode;
// verify arguments
if ((vma->vm_flags & VM_EXEC))
return -EPERM;
if (vma->vm_pgoff)
return -EINVAL;
// verify size
size = vma->vm_end - vma->vm_start;
if (size == 0)
return -EINVAL;
// determine and verify order (1<<n)
// is a power of 2?
if ((size & (size - 1)) != 0)
return -EIO;
order = __fls((unsigned long) size); // size = 256 -> order = 8
if (1 << order != size)
return -ENXIO;
// adjust order to page size
if (order < PAGE_SHIFT)
return -E2BIG;
order -= PAGE_SHIFT;
// ok, allocate pages
page = alloc_pages(GFP_KERNEL_ACCOUNT, order);
if (!page)
return -ENOMEM;
pages = page_address(page);
shm = kzalloc(sizeof(*shm), GFP_KERNEL);
if (!shm) {
free_pages((unsigned long) pages, order);
return -ENOMEM;
}
shm->head = pages;
shm->size = size;
shm->order = order;
// get our table
inode = file->f_path.dentry->d_inode;
id = (uint32_t) (unsigned long) PDE_DATA(inode);
t = get_table(id);
if (!t) {
free_pages((unsigned long) pages, order);
kfree(shm);
return -ENOENT;
}
pfn = virt_to_phys(pages) >> PAGE_SHIFT;
vma->vm_private_data = pages; // remember kernel-space address
vma->vm_ops = &vm_mmap_ops;
ret = remap_pfn_range(vma, vma->vm_start, pfn, size, vma->vm_page_prot);
if (ret == 0) {
spin_lock(&t->shm_lock);
list_add(&shm->list_entry, &t->shm_list);
spin_unlock(&t->shm_lock);
}
table_put(t);
return ret;
}
static int proc_control_open(struct inode *inode, struct file *file) {
uint32_t id;
struct rtpengine_table *t;
unsigned long flags;
int err;
if ((err = proc_generic_open_modref(inode, file)))
return err;
id = (uint32_t) (unsigned long) PDE_DATA(inode);
t = get_table(id);
if (!t)
return -ENOENT;
write_lock_irqsave(&table_lock, flags);
if (t->pid) {
write_unlock_irqrestore(&table_lock, flags);
table_put(t);
return -EBUSY;
}
t->pid = current->tgid;
write_unlock_irqrestore(&table_lock, flags);
table_put(t);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,1,0)
return stream_open(inode, file);
#else
return 0;
#endif
}
static int proc_control_close(struct inode *inode, struct file *file) {
uint32_t id;
struct rtpengine_table *t;
unsigned long flags;
id = (uint32_t) (unsigned long) PDE_DATA(inode);
t = get_table(id);
if (!t)
return 0;
write_lock_irqsave(&table_lock, flags);
t->pid = 0;
write_unlock_irqrestore(&table_lock, flags);
table_put(t);
proc_generic_close_modref(inode, file);
return 0;
}
/* array must be locked */
static int auto_array_find_free_index(struct re_auto_array *a) {
void *ptr;
unsigned int u, idx;
DBG("auto_array_find_free_index()\n");
if (!list_empty(&a->free_list)) {
DBG("returning from free list\n");
return pop_free_list_entry(a);
}
for (idx = 0; idx < a->array_len / (sizeof(unsigned long) * 8); idx++) {
if (~a->used_bitfield[idx])
goto found;
}
/* nothing free found - extend array */
DBG("no free slot found, extending array\n");
u = a->array_len * 2;
if (unlikely(!u))
u = 256; /* XXX make configurable? */
DBG("extending array from %u to %u\n", a->array_len, u);
ptr = krealloc(a->array, sizeof(*a->array) * u, GFP_ATOMIC);
if (!ptr)
return -ENOMEM;
a->array = ptr;
DBG("zeroing main array starting at idx %u for %lu bytes\n",
a->array_len, (u - a->array_len) * sizeof(*a->array));
memset(&a->array[a->array_len], 0,
(u - a->array_len) * sizeof(*a->array));
ptr = krealloc(a->used_bitfield, u / 8, GFP_ATOMIC);
if (!ptr)
return -ENOMEM;
a->used_bitfield = ptr;
DBG("zeroing bitfield array starting at idx %lu for %u bytes\n",
a->array_len / (sizeof(unsigned long) * 8),
(u - a->array_len) / 8);
memset(&a->used_bitfield[a->array_len / (sizeof(unsigned long) * 8)], 0,
(u - a->array_len) / 8);
idx = a->array_len / (sizeof(unsigned long) * 8);
a->array_len = u;
found:
/* got our bitfield index, now look for the slot */
DBG("found unused slot at index %u\n", idx);
idx = idx * sizeof(unsigned long) * 8;
for (u = 0; u < sizeof(unsigned long) * 8; u++) {
if (!a->array[idx + u])
goto found2;
}
panic("BUG while looking for unused index");
found2:
idx += u;
DBG("unused idx is %u\n", idx);
return idx;
}
/* lock must be held */
static struct re_call *get_call(struct rtpengine_table *table, unsigned int idx) {
struct re_call *ret;
if (idx >= calls.array_len)
return NULL;
ret = calls.array[idx];
if (!ret)
return NULL;
if (table && ret->table_id != table->id)
return NULL;
if (ret->deleted)
return NULL;
return ret;
}
/* handles the locking (read) and reffing */
static struct re_call *get_call_lock(struct rtpengine_table *table, unsigned int idx) {
struct re_call *ret;
unsigned long flags;
DBG("entering get_call_lock()\n");
_r_lock(&calls.lock, flags);
DBG("calls.lock acquired\n");
ret = get_call(table, idx);
if (ret)
ref_get(ret);
else
DBG("call not found\n");
_r_unlock(&calls.lock, flags);
DBG("calls.lock unlocked\n");
return ret;
}
/* lock must be held */
static struct re_stream *get_stream(struct re_call *call, unsigned int idx) {
struct re_stream *ret;
if (idx >= streams.array_len)
return NULL;
ret = streams.array[idx];
if (!ret)
return NULL;
if (call && ret->info.idx.call_idx != call->info.call_idx)
return NULL;
return ret;
}
/* handles the locking (read) and reffing */
static struct re_stream *get_stream_lock(struct re_call *call, unsigned int idx) {
struct re_stream *ret;
unsigned long flags;
DBG("entering get_stream_lock()\n");
_r_lock(&streams.lock, flags);
DBG("streams.lock acquired\n");
ret = get_stream(call, idx);
if (ret)
ref_get(ret);
else
DBG("stream not found\n");
_r_unlock(&streams.lock, flags);
DBG("streams.lock unlocked\n");
return ret;
}
static int table_new_call(struct rtpengine_table *table, struct rtpengine_call_info *info) {
int err;
struct re_call *call, *hash_entry;
unsigned int idx;
unsigned long flags;
/* validation */
if (info->call_id[0] == '\0')
return -EINVAL;
if (!memchr(info->call_id, '\0', sizeof(info->call_id)))
return -EINVAL;
DBG("Creating new call object\n");
/* allocate and initialize */
call = kzalloc(sizeof(*call), GFP_KERNEL);
if (!call)
return -ENOMEM;
atomic_set(&call->refcnt, 1);
call->table_id = table->id;
INIT_LIST_HEAD(&call->streams);
INIT_LIST_HEAD(&call->table_entry);
/* check for name collisions */
call->hash_bucket = crc32_le(0x52342, info->call_id, strlen(info->call_id));
call->hash_bucket = call->hash_bucket & ((1 << RE_HASH_BITS) - 1);
spin_lock_irqsave(&table->calls_hash_lock[call->hash_bucket], flags);
hlist_for_each_entry(hash_entry, &table->calls_hash[call->hash_bucket], calls_hash_entry) {
if (!strcmp(hash_entry->info.call_id, info->call_id))
goto found;
}
goto not_found;
found:
spin_unlock_irqrestore(&table->calls_hash_lock[call->hash_bucket], flags);
printk(KERN_ERR "Call name collision: %s\n", info->call_id);
err = -EEXIST;
goto fail2;
not_found:
hlist_add_head(&call->calls_hash_entry, &table->calls_hash[call->hash_bucket]);
ref_get(call);
spin_unlock_irqrestore(&table->calls_hash_lock[call->hash_bucket], flags);
/* create proc */
call->root = proc_mkdir_user(info->call_id, 0555, table->proc_calls);
err = -ENOMEM;
if (!call->root)
goto fail4;
_w_lock(&calls.lock, flags);
idx = err = auto_array_find_free_index(&calls);
if (err < 0)
goto fail3;
set_auto_array_index(&calls, idx, call); /* handing over ref */
info->call_idx = idx;
memcpy(&call->info, info, sizeof(call->info));
list_add(&call->table_entry, &table->calls); /* new ref here */
ref_get(call);
_w_unlock(&calls.lock, flags);
return 0;
fail3:
_w_unlock(&calls.lock, flags);
fail4:
spin_lock_irqsave(&table->calls_hash_lock[call->hash_bucket], flags);
hlist_del(&call->calls_hash_entry);
spin_unlock_irqrestore(&table->calls_hash_lock[call->hash_bucket], flags);
call_put(call);
fail2:
call_put(call);
return err;
}
static int table_del_call(struct rtpengine_table *table, unsigned int idx) {
int err;
struct re_call *call = NULL;
call = get_call_lock(table, idx);
err = -ENOENT;
if (!call)
goto out;
del_call(call, table);
err = 0;
out:
if (call)
call_put(call);
return err;
}
/* must be called lock-free */
static void del_call(struct re_call *call, struct rtpengine_table *table) {
struct re_stream *stream;
unsigned long flags;
DBG("del_call()\n");
/* the only references left might be the ones in the lists, so get one until we're done */
ref_get(call);
_w_lock(&calls.lock, flags);
if (call->deleted) {
/* already doing this */
_w_unlock(&calls.lock, flags);
call_put(call);
return;
}
call->deleted = 1;
_w_unlock(&calls.lock, flags);
DBG("locking streams.lock\n");
_w_lock(&streams.lock, flags);
while (!list_empty(&call->streams)) {
stream = list_first_entry(&call->streams, struct re_stream, call_entry);
ref_get(stream);
_w_unlock(&streams.lock, flags);
del_stream(stream, table); /* removes it from this list */
DBG("re-locking streams.lock\n");
_w_lock(&streams.lock, flags);
}
_w_unlock(&streams.lock, flags);
DBG("locking table's call hash\n");
spin_lock_irqsave(&table->calls_hash_lock[call->hash_bucket], flags);
if (!hlist_unhashed(&call->calls_hash_entry)) {
hlist_del_init(&call->calls_hash_entry);
call_put(call);
}
spin_unlock_irqrestore(&table->calls_hash_lock[call->hash_bucket], flags);
_w_lock(&calls.lock, flags);
if (!list_empty(&call->table_entry)) {
list_del_init(&call->table_entry);
call_put(call);
}
if (calls.array[call->info.call_idx] == call) {
auto_array_clear_index(&calls, call->info.call_idx);
call_put(call);
}
_w_unlock(&calls.lock, flags);
DBG("del_call() done, releasing ref\n");
call_put(call); /* might be the last ref */
}
static int table_new_stream(struct rtpengine_table *table, struct rtpengine_stream_info *info) {
int err;
struct re_call *call;
struct re_stream *stream, *hash_entry;
unsigned long flags;
unsigned int idx;
struct proc_dir_entry *pde;
/* validation */
if (info->stream_name[0] == '\0')
return -EINVAL;
if (!memchr(info->stream_name, '\0', sizeof(info->stream_name)))
return -EINVAL;
/* get call object */
call = get_call_lock(table, info->idx.call_idx);
if (!call)
return -ENOENT;
DBG("Creating new stream object\n");
/* allocate and initialize */
err = -ENOMEM;
stream = kzalloc(sizeof(*stream), GFP_KERNEL);
if (!stream)
goto fail2;
atomic_set(&stream->refcnt, 1);
INIT_LIST_HEAD(&stream->packet_list);
INIT_LIST_HEAD(&stream->call_entry);
spin_lock_init(&stream->packet_list_lock);
init_waitqueue_head(&stream->read_wq);
init_waitqueue_head(&stream->close_wq);
/* check for name collisions */
stream->hash_bucket = crc32_le(0x52342 ^ info->idx.call_idx, info->stream_name, strlen(info->stream_name));
stream->hash_bucket = stream->hash_bucket & ((1 << RE_HASH_BITS) - 1);
spin_lock_irqsave(&table->streams_hash_lock[stream->hash_bucket], flags);
hlist_for_each_entry(hash_entry, &table->streams_hash[stream->hash_bucket], streams_hash_entry) {
if (hash_entry->info.idx.call_idx == info->idx.call_idx
&& !strcmp(hash_entry->info.stream_name, info->stream_name))
goto found;
}
goto not_found;
found:
spin_unlock_irqrestore(&table->streams_hash_lock[stream->hash_bucket], flags);
printk(KERN_ERR "Stream name collision: %s\n", info->stream_name);
err = -EEXIST;
goto fail3;
not_found:
hlist_add_head(&stream->streams_hash_entry, &table->streams_hash[stream->hash_bucket]);
ref_get(stream);
spin_unlock_irqrestore(&table->streams_hash_lock[stream->hash_bucket], flags);
/* add into array */
_w_lock(&streams.lock, flags);
idx = err = auto_array_find_free_index(&streams);
if (err < 0)
goto fail4;
set_auto_array_index(&streams, idx, stream); /* handing over ref */
/* copy info */
info->idx.stream_idx = idx;
memcpy(&stream->info, info, sizeof(call->info));
if (!stream->info.max_packets)
stream->info.max_packets = stream_packets_list_limit;
list_add(&stream->call_entry, &call->streams); /* new ref here */
ref_get(stream);
stream->call = call;
ref_get(call);
_w_unlock(&streams.lock, flags);
/* proc_ functions may sleep, so this must be done outside of the lock */
pde = stream->file = proc_create_user(info->stream_name, S_IFREG | 0440, call->root,
&proc_stream_ops, (void *) (unsigned long) info->idx.stream_idx);
err = -ENOMEM;
if (!pde)
goto fail5;
call_put(call);
return 0;
fail5:
_w_lock(&streams.lock, flags);
auto_array_clear_index(&streams, idx);
fail4:
_w_unlock(&streams.lock, flags);
spin_lock_irqsave(&table->streams_hash_lock[stream->hash_bucket], flags);
hlist_del(&stream->streams_hash_entry);
spin_unlock_irqrestore(&table->streams_hash_lock[stream->hash_bucket], flags);
stream_put(stream);
fail3:
stream_put(stream);
fail2:
call_put(call);
return err;
}
/* must be called lock-free and with one reference held, which will be released */
static void del_stream(struct re_stream *stream, struct rtpengine_table *table) {
unsigned long flags;
DBG("del_stream()\n");
DBG("locking stream's packet list lock\n");
spin_lock_irqsave(&stream->packet_list_lock, flags);
if (stream->eof) {
/* already done this */
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
DBG("stream is EOF\n");
stream_put(stream);
return;
}
stream->eof = 1;
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
clear_stream_packets(stream);
DBG("stream is finished (EOF), waking up threads\n");
wake_up_interruptible(&stream->read_wq);
/* sleeping readers will now close files */
DBG("clearing stream from streams_hash\n");
spin_lock_irqsave(&table->streams_hash_lock[stream->hash_bucket], flags);
if (!hlist_unhashed(&stream->streams_hash_entry)) {
hlist_del_init(&stream->streams_hash_entry);
stream_put(stream);
}
spin_unlock_irqrestore(&table->streams_hash_lock[stream->hash_bucket], flags);
_w_lock(&streams.lock, flags);
if (!list_empty(&stream->call_entry)) {
DBG("clearing stream's call_entry\n");
list_del_init(&stream->call_entry);
stream_put(stream);
}
_w_unlock(&streams.lock, flags);
/* At this point, there should only be 2 references left: ours, and the entry in
* the "streams" array. Any other references are open files and we must wait until
* they're closed. There can be no new open file references as the stream is set
* to eof. */
DBG("del_stream() waiting for other refs\n");
while (atomic_read(&stream->refcnt) != 2) {
if (wait_event_interruptible_timeout(stream->close_wq, atomic_read(&stream->refcnt) == 2, HZ / 10) == 0)
break;
}
DBG("clearing stream's stream_idx entry\n");
_w_lock(&streams.lock, flags);
if (streams.array[stream->info.idx.stream_idx] == stream) {
auto_array_clear_index(&streams, stream->info.idx.stream_idx);
stream_put(stream); /* down to 1 ref */
}
else
printk(KERN_WARNING "BUG in del_stream with streams.array\n");
_w_unlock(&streams.lock, flags);
DBG("del_stream() releasing last ref\n");
stream_put(stream);
}
static int table_del_stream(struct rtpengine_table *table, const struct rtpengine_stream_idx_info *info) {
int err;
struct re_call *call;
struct re_stream *stream;
DBG("table_del_stream()\n");
call = get_call_lock(table, info->call_idx);
err = -ENOENT;
if (!call)
return -ENOENT;
stream = get_stream_lock(call, info->stream_idx);
err = -ENOENT;
if (!stream)
goto out;
del_stream(stream, table);
err = 0;
out:
call_put(call);
return err;
}
static ssize_t proc_stream_read(struct file *f, char __user *b, size_t l, loff_t *o) {
unsigned int stream_idx = (unsigned int) (unsigned long) PDE_DATA(f->f_path.dentry->d_inode);
struct re_stream *stream;
unsigned long flags;
struct re_stream_packet *packet;
ssize_t ret;
const char *to_copy;
struct udphdr *uh;
struct iphdr *ih;
struct ipv6hdr *ih6;
unsigned int udplen, version;
DBG("entering proc_stream_read()\n");
stream = get_stream_lock(NULL, stream_idx);
if (!stream)
return -EINVAL;
DBG("locking stream's packet list lock\n");
spin_lock_irqsave(&stream->packet_list_lock, flags);
while (list_empty(&stream->packet_list) && !stream->eof) {
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
DBG("list is empty\n");
ret = -EAGAIN;
if ((f->f_flags & O_NONBLOCK))
goto out;
DBG("going to sleep\n");
ret = -ERESTARTSYS;
if (wait_event_interruptible_timeout(stream->read_wq, !list_empty(&stream->packet_list) || stream->eof, HZ / 10))
goto out;
DBG("awakened\n");
spin_lock_irqsave(&stream->packet_list_lock, flags);
}
ret = 0;
if (stream->eof) {
DBG("eof\n");
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
goto out;
}
DBG("removing packet from queue, reading %i bytes\n", (int) l);
packet = list_first_entry(&stream->packet_list, struct re_stream_packet, list_entry);
list_del(&packet->list_entry);
stream->list_count--;
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
if (packet->buflen) {
ret = packet->buflen;
to_copy = packet->buf;
DBG("packet is from userspace, %i bytes\n", (int) ret);
}
else if (packet->skbuf) {
ret = packet->skbuf->len;
to_copy = packet->skbuf->data;
DBG("packet is from kernel, %i bytes\n", (int) ret);
}
else {
printk(KERN_WARNING "BUG in packet stream list buffer\n");
ret = -ENXIO;
goto err;
}
if (ret > l)
ret = l;
version = ((to_copy[0] & 0xF0) >> 4);
if (version == 4) {
ih = (struct iphdr *)to_copy;
ih->check = 0;
ih->check = ip_fast_csum((u8 *)ih, ih->ihl);
if (ih->check == 0){
ih->check = CSUM_MANGLED_0;
}
uh = (struct udphdr *)(to_copy + sizeof(struct iphdr));
udplen = ntohs(uh->len);
uh->check = 0;
uh->check = csum_tcpudp_magic(ih->saddr, ih->daddr, udplen, IPPROTO_UDP, csum_partial(uh, udplen, 0));
if (uh->check == 0){
uh->check = CSUM_MANGLED_0;
}
} else if (version == 6) {
ih6 = (struct ipv6hdr *)to_copy;
uh = (struct udphdr *)(to_copy + sizeof(struct ipv6hdr));
udplen = ntohs(uh->len);
uh->check = 0;
uh->check = csum_ipv6_magic(&ih6->saddr, &ih6->daddr, udplen, IPPROTO_UDP, csum_partial(uh, udplen, 0));
if (uh->check == 0){
uh->check = CSUM_MANGLED_0;
}
}
if (copy_to_user(b, to_copy, ret))
ret = -EFAULT;
err:
free_packet(packet);
out:
stream_put(stream);
return ret;
}
static unsigned int proc_stream_poll(struct file *f, struct poll_table_struct *p) {
unsigned int stream_idx = (unsigned int) (unsigned long) PDE_DATA(f->f_path.dentry->d_inode);
struct re_stream *stream;
unsigned long flags;
unsigned int ret = 0;
DBG("entering proc_stream_poll()\n");
stream = get_stream_lock(NULL, stream_idx);
if (!stream)
return POLLERR;
poll_wait(f, &stream->read_wq, p);
DBG("locking stream's packet list lock\n");
spin_lock_irqsave(&stream->packet_list_lock, flags);
if (!list_empty(&stream->packet_list))
ret |= POLLIN | POLLRDNORM;
if (stream->eof)
ret |= POLLIN | POLLRDNORM | POLLHUP | POLLRDHUP;
DBG("returning from proc_stream_poll()\n");
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
stream_put(stream);
return ret;
}
static int proc_stream_open(struct inode *i, struct file *f) {
int err;
unsigned int stream_idx = (unsigned int) (unsigned long) PDE_DATA(f->f_path.dentry->d_inode);
struct re_stream *stream;
unsigned long flags;
DBG("entering proc_stream_open()\n");
if ((err = proc_generic_open_modref(i, f)))
return err;
stream = get_stream_lock(NULL, stream_idx);
if (!stream)
return -EIO;
spin_lock_irqsave(&stream->packet_list_lock, flags);
if (stream->eof) {
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
stream_put(stream);
return -ETXTBSY;
}
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
return 0;
}
static int proc_stream_close(struct inode *i, struct file *f) {
unsigned int stream_idx = (unsigned int) (unsigned long) PDE_DATA(f->f_path.dentry->d_inode);
struct re_stream *stream;
DBG("entering proc_stream_close()\n");
stream = get_stream_lock(NULL, stream_idx);
if (!stream)
return -EIO;
/* release our own ref and the ref from _open */
stream_put(stream);
stream_put(stream);
proc_generic_close_modref(i, f);
return 0;
}
static void add_stream_packet(struct re_stream *stream, struct re_stream_packet *packet) {
int err;
unsigned long flags;
LIST_HEAD(delete_list);
/* append */
DBG("entering add_stream_packet()\n");
DBG("locking stream's packet list lock\n");
spin_lock_irqsave(&stream->packet_list_lock, flags);
err = 0;
if (stream->eof)
goto err; /* we accept, but ignore/discard */
DBG("adding packet to queue\n");
list_add_tail(&packet->list_entry, &stream->packet_list);
stream->list_count++;
DBG("%u packets now in queue\n", stream->list_count);
/* discard older packets */
while (stream->list_count > stream->info.max_packets) {
log_err("Queue is full, discarding old packet from queue");
packet = list_first_entry(&stream->packet_list, struct re_stream_packet, list_entry);
list_del(&packet->list_entry);
list_add(&packet->list_entry, &delete_list);
stream->list_count--;
}
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
DBG("stream's packet list lock is unlocked, now awakening processes\n");
wake_up_interruptible(&stream->read_wq);
while (!list_empty(&delete_list)) {
packet = list_first_entry(&delete_list, struct re_stream_packet, list_entry);
list_del(&packet->list_entry);
free_packet(packet);
}
return;
err:
DBG("error adding packet to stream\n");
spin_unlock_irqrestore(&stream->packet_list_lock, flags);
free_packet(packet);
return;
}
static int stream_packet(struct rtpengine_table *t, const struct rtpengine_packet_info *info, size_t len) {
struct re_stream *stream;
int err;
struct re_stream_packet *packet;
const char *data = info->data;
if (!len) /* can't have empty packets */
return -EINVAL;
DBG("received %zu bytes of data from userspace\n", len);
err = -ENOENT;
stream = get_stream_lock(NULL, info->stream_idx);
if (!stream)
goto out;
DBG("data for stream %s\n", stream->info.stream_name);
/* alloc and copy */
err = -ENOMEM;
packet = kmalloc(sizeof(*packet) + len, GFP_KERNEL);
if (!packet)
goto out2;
memset(packet, 0, sizeof(*packet));
memcpy(packet->buf, data, len);
packet->buflen = len;
/* append */
add_stream_packet(stream, packet);
err = 0;
goto out2;
out2:
stream_put(stream);
out:
return err;
}
// returns: -1 = no SSRCs were given, -2 = SSRCs were given but SSRC not found
static int target_find_ssrc(struct rtpengine_target *g, uint32_t ssrc) {
int ssrc_idx;
if (unlikely(!g->target.ssrc[0]))
return -1;
for (ssrc_idx = 0; ssrc_idx < RTPE_NUM_SSRC_TRACKING; ssrc_idx++) {
if (!g->target.ssrc[ssrc_idx])
break;
if (g->target.ssrc[ssrc_idx] == ssrc)
return ssrc_idx;
}
return -2;
}
static void parse_rtcp(struct rtp_parsed *rtp, struct sk_buff *skb) {
rtp->ok = 0;
rtp->rtcp = 0;
if (skb->len < sizeof(struct rtcp_header))
return;
rtp->rtcp_header = (void *) skb->data;
rtp->header_len = sizeof(struct rtcp_header);
rtp->payload = skb->data + sizeof(struct rtcp_header);
rtp->payload_len = skb->len - sizeof(struct rtcp_header);
rtp->rtcp = 1;
}
static void shut_threads(struct timer_thread **thr, unsigned int nt) {
unsigned int i;
if (!thr)
return;
for (i = 0; i < nt; i++) {
struct timer_thread *tt = thr[i];
if (!tt)
continue;
//printk(KERN_WARNING "stopping %u\n", i);
atomic_set(&tt->shutdown, 1);
wake_up_interruptible(&tt->queue);
// thread frees itself
}
kfree(thr);
}
static void shut_all_threads(void) {
LIST_HEAD(list);
unsigned int nt;
struct timer_thread **thr;
_write_lock(&media_player_lock);
thr = timer_threads;
nt = num_timer_threads;
timer_threads = NULL;
num_timer_threads = 0;
_write_unlock(&media_player_lock);
shut_threads(thr, nt);
}
static void free_packet_stream(struct play_stream_packets *stream) {
struct play_stream_packet *packet, *tp;
struct rtpengine_table *t;
//printk(KERN_WARNING "freeing packet stream %p\n", stream);
list_for_each_entry_safe(packet, tp, &stream->packets, list)
free_play_stream_packet(packet);
if (stream->table_id != -1 && !list_empty(&stream->table_entry)) {
t = get_table(stream->table_id);
if (t) {
_spin_lock(&t->player_lock);
list_del_init(&stream->table_entry);
t->num_packet_streams--;
_spin_unlock(&t->player_lock);
table_put(t);
}
}
kfree(stream);
}
static void __unref_packet_stream(struct play_stream_packets *stream) {
if (atomic_dec_and_test(&stream->refcnt))
free_packet_stream(stream);
}
// stream must be locked and started
static ktime_t play_stream_packet_time(struct play_stream *stream, struct play_stream_packet *packet) {
return ktime_add(stream->start_time, packet->delay);
}
// stream must be locked, started, and non-empty
static void play_stream_next_packet(struct play_stream *stream) {
struct play_stream_packet *packet = stream->position;
struct play_stream_packets *packets = stream->packets;
_read_lock(&packets->lock);
stream->position = list_is_last(&packet->list, &packets->packets) ? NULL : list_next_entry(packet, list);
if (!stream->position) {
if (stream->info.repeat > 1) {
stream->info.repeat--;
stream->position = list_first_entry(&packets->packets, struct play_stream_packet, list);
stream->start_time = play_stream_packet_time(stream, packet);
stream->info.ts += packet->ts + packet->duration_ts;
stream->info.seq += packet->seq + 1;
}
}
_read_unlock(&packets->lock);
}
// stream must be locked, started, and non-empty
// tt->tree_lock must be locked
static void play_stream_insert_packet_to_tree(struct play_stream *stream, struct timer_thread *tt, ktime_t scheduled) {
int64_t offset;
// make sure key is unique
// negative as we only have btree_last(), no btree_first()
for (offset = 0; btree_lookup64(&tt->tree, -1 * ktime_to_ns(scheduled) + offset) != NULL; offset++)
{ }
stream->tree_index = -1 * ktime_to_ns(scheduled) + offset;
btree_insert64(&tt->tree, stream->tree_index, stream, GFP_ATOMIC);
}
// stream must be locked, started, and non-empty
// tree must not be locked
static void play_stream_schedule_packet_to_thread(struct play_stream *stream, struct timer_thread *tt,
bool reschedule)
{
ktime_t scheduled;
struct play_stream_packet *packet;
packet = stream->position;
scheduled = play_stream_packet_time(stream, packet);
//if (sleeper)
//printk(KERN_WARNING "scheduling packet %u on thread %u\n", packet->seq, tt->idx);
//printk(KERN_WARNING "scheduling stream %p on thread %p (sleeper %i)\n", stream, tt, sleeper);
_spin_lock(&tt->tree_lock);
if (reschedule && !tt->scheduled && !tt->tree_added) {
// we know we are next. remember this
tt->scheduled = stream;
ref_play_stream(stream);
tt->scheduled_at = scheduled;
}
else {
// all other cases: add to tree, or put as next
if (tt->scheduled && ktime_before(scheduled, tt->scheduled_at)) {
// we are next. return previous entry to tree and put us as next
play_stream_insert_packet_to_tree(tt->scheduled, tt, tt->scheduled_at);
tt->scheduled = stream;
ref_play_stream(stream);
tt->scheduled_at = scheduled;
}
else {
// insert into tree
play_stream_insert_packet_to_tree(stream, tt, scheduled);
ref_play_stream(stream);
}
tt->tree_added = true;
}
stream->timer_thread = tt;
_spin_unlock(&tt->tree_lock);
}
// stream must be locked, started, and non-empty
// threads->tree_lock must be unlocked (one will be locked)
// lock order: stream lock first, thread->tree_lock second
// num_timer_threads must be >0
static void play_stream_schedule_packet(struct play_stream *stream) {
struct timer_thread *tt;
unsigned int idx;
// XXX check if already scheduled
_read_lock(&media_player_lock);
idx = atomic_fetch_add(1, &last_timer_thread_idx) % num_timer_threads;
tt = timer_threads[idx];
_read_unlock(&media_player_lock);
play_stream_schedule_packet_to_thread(stream, tt, false);
wake_up_interruptible(&tt->queue); // XXX need to refcount tt? for shutdown/free race?
}
static void play_stream_send_packet(struct play_stream *stream, struct play_stream_packet *packet) {
struct sk_buff *skb;
struct rtp_parsed rtp;
skb = alloc_skb(packet->len + MAX_HEADER + MAX_SKB_TAIL_ROOM, GFP_KERNEL);
if (!skb)
return; // XXX log/count error?
// reserve head room (L2/L3 header) and copy data in
skb_reserve(skb, MAX_HEADER);
// RTP header
rtp.header_len = sizeof(*rtp.rtp_header);
rtp.rtp_header = skb_put(skb, sizeof(*rtp.rtp_header));
*rtp.rtp_header = (struct rtp_header) {
.v_p_x_cc = 0x80,
.m_pt = stream->info.pt,
.seq_num = htons(stream->info.seq + packet->seq),
.timestamp = htonl(stream->info.ts + packet->ts),
.ssrc = stream->info.ssrc,
};
// payload
rtp.payload = skb_put(skb, packet->len);
memcpy(rtp.payload, packet->data, packet->len);
rtp.payload_len = packet->len;
rtp.ok = 1;
rtp.rtcp = 0;
// XXX add TOS
proxy_packet_srtp_encrypt(skb, &stream->encrypt, &stream->info.encrypt, &rtp, 0, &stream->info.ssrc_stats);
send_proxy_packet(skb, &stream->info.src_addr, &stream->info.dst_addr, 0, NULL);
atomic64_inc(&stream->info.stats->packets);
atomic64_add(packet->len, &stream->info.stats->bytes);
atomic64_inc(&stream->info.iface_stats->out.packets);
atomic64_add(packet->len, &stream->info.iface_stats->out.bytes);
}
static void free_play_stream(struct play_stream *s) {
//printk(KERN_WARNING "freeing play stream %p\n", s);
free_crypto_context(&s->encrypt);
if (s->packets)
unref_packet_stream(s->packets);
kfree(s);
}
static void __unref_play_stream(struct play_stream *s) {
if (atomic_dec_and_test(&s->refcnt))
free_play_stream(s);
}
static int timer_worker(void *p) {
struct timer_thread *tt = p;
//printk(KERN_WARNING "cpu %u running\n", smp_processor_id());
while (!atomic_read(&tt->shutdown)) {
int64_t timer_scheduled;
struct play_stream *stream;
ktime_t now, packet_scheduled;
int64_t sleeptime_ns;
struct play_stream_packet *packet;
struct play_stream_packets *packets;
//printk(KERN_WARNING "cpu %u (%p) loop enter\n", smp_processor_id(), tt);
_spin_lock(&tt->tree_lock);
// grab and remove next scheduled stream, either from predetermined entry or from tree
stream = tt->scheduled;
if (!stream) {
// XXX combine lookup and removal into one operation
stream = btree_last64(&tt->tree, &timer_scheduled);
if (stream)
btree_remove64(&tt->tree, timer_scheduled);
}
else {
tt->scheduled = NULL;
tt->scheduled_at = 0;
}
tt->tree_added = false; // we're up to date before unlock
_spin_unlock(&tt->tree_lock);
sleeptime_ns = 500000000LL; // 0.5 seconds
if (stream) {
//printk(KERN_WARNING "cpu %u got stream\n", smp_processor_id());
now = ktime_get();
_spin_lock(&stream->lock);
if (stream->table_id == -1) {
// we've been descheduled
_spin_unlock(&stream->lock);
unref_play_stream(stream);
continue;
}
stream->timer_thread = NULL;
packet = stream->position;
packet_scheduled = play_stream_packet_time(stream, packet);
//printk(KERN_WARNING "next packet %p at %li, time now %li\n", packet,
//(long int) ktime_to_ns(packet_scheduled),
//(long int) ktime_to_ns(now));
if (ktime_after(now, packet_scheduled)) {
//printk(KERN_WARNING "cpu %u sending packet %p from stream %p now\n",
//smp_processor_id(), packet, stream);
_spin_unlock(&stream->lock);
//printk(KERN_WARNING "cpu %u sending packet %u now\n", tt->idx, packet->seq);
play_stream_send_packet(stream, packet);
_spin_lock(&stream->lock);
if (stream->table_id != -1)
play_stream_next_packet(stream);
else
stream->position = NULL;
packets = NULL;
if (stream->position) {
play_stream_schedule_packet_to_thread(stream, tt, false);
sleeptime_ns = 0; // loop and get next packet from tree
_spin_unlock(&stream->lock);
unref_play_stream(stream);
stream = NULL;
}
else {
// end of stream
if (!stream->info.remove_at_end)
_spin_unlock(&stream->lock);
else {
// remove it
end_of_stream(stream);
_spin_unlock(&stream->lock);
_write_lock(&media_player_lock);
if (play_streams[stream->idx] == stream) {
play_streams[stream->idx] = NULL;
unref_play_stream(stream);
}
// else log error?
_write_unlock(&media_player_lock);
}
unref_play_stream(stream);
stream = NULL;
}
}
else {
// figure out sleep time
int64_t ns_diff = ktime_to_ns(ktime_sub(packet_scheduled, now));
//printk(KERN_WARNING "stream time diff %li ns\n", (long int) ns_diff);
//if (diff == 0 && ns_diff > 0)
//printk(KERN_WARNING "stream time diff %li ns %li jiffies\n",
//(long int) ns_diff, (long int) diff);
//if (ns_diff > 0)
//printk(KERN_WARNING "sleep time %li ms for packet %u on cpu %u\n",
//(long int) (ns_diff / 1000000LL), packet->seq,
//tt->idx);
// return packet to tree
play_stream_schedule_packet_to_thread(stream, tt, true);
_spin_unlock(&stream->lock);
sleeptime_ns = min(sleeptime_ns, ns_diff);
unref_play_stream(stream);
stream = NULL;
}
}
if (sleeptime_ns > 0) {
ktime_t a, b, c;
int64_t c_ns;
//printk(KERN_WARNING "cpu %u sleep %li ms, slack %li ns\n", tt->idx,
//(long int) (sleeptime_ns / 1000000LL),
//(long int) (current->timer_slack_ns / 1000000LL));
a = ktime_get();
wait_event_interruptible_hrtimeout(tt->queue, atomic_read(&tt->shutdown) || tt->tree_added,
ktime_set(0, sleeptime_ns));
b = ktime_get();
c = ktime_sub(b, a);
c_ns = ktime_to_ns(c);
//printk(KERN_WARNING "cpu %u wanted sleep %li ms, actual sleep %li ms\n", tt->idx,
//(long int) (sleeptime_ns / 1000000LL), (long int) (c_ns / 1000000LL));
}
//printk(KERN_WARNING "cpu %u awoken\n", smp_processor_id());
}
//printk(KERN_WARNING "cpu %u exiting\n", smp_processor_id());
btree_destroy64(&tt->tree);
kfree(tt);
return 0;
}
static struct timer_thread *launch_thread(unsigned int cpu) {
struct timer_thread *tt;
int ret;
//printk(KERN_WARNING "try to launch %u\n", cpu);
tt = kzalloc(sizeof(*tt), GFP_KERNEL);
if (!tt)
return ERR_PTR(-ENOMEM);
init_waitqueue_head(&tt->queue);
atomic_set(&tt->shutdown, 0);
ret = btree_init64(&tt->tree);
if (ret) {
btree_destroy64(&tt->tree);
kfree(tt);
return ERR_PTR(ret);
}
_spin_lock_init(&tt->tree_lock);
tt->idx = cpu;
tt->task = kthread_create_on_node(timer_worker, tt, cpu_to_node(cpu), "rtpengine_%u", cpu);
if (IS_ERR(tt->task)) {
int ret = PTR_ERR(tt->task);
btree_destroy64(&tt->tree);
kfree(tt);
return ERR_PTR(ret);
}
kthread_bind(tt->task, cpu);
wake_up_process(tt->task);
//printk(KERN_WARNING "cpu %u ok\n", cpu);
return tt;
}
static int init_play_streams(unsigned int n_play_streams, unsigned int n_stream_packets) {
int ret = 0;
struct timer_thread **threads_new = NULL;
unsigned int new_num_threads = 0;
bool need_threads;
struct play_stream **new_play_streams, **old_play_streams = NULL;
struct play_stream_packets **new_stream_packets, **old_stream_packets = NULL;
unsigned int cpu;
_write_lock(&media_player_lock);
if (num_play_streams >= n_play_streams && num_stream_packets >= n_stream_packets)
goto out;
need_threads = timer_threads == NULL;
_write_unlock(&media_player_lock);
//printk(KERN_WARNING "allocating for %u/%u -> %u/%u streams\n",
//num_play_streams, n_play_streams,
//num_stream_packets, n_stream_packets);
ret = -ENOMEM;
new_play_streams = kzalloc(sizeof(*new_play_streams) * n_play_streams, GFP_KERNEL);
if (!new_play_streams)
goto err;
new_stream_packets = kzalloc(sizeof(*new_stream_packets) * n_stream_packets, GFP_KERNEL);
if (!new_stream_packets)
goto err;
if (need_threads) {
ret = -ENXIO;
new_num_threads = num_online_cpus();
if (new_num_threads == 0)
goto err;
threads_new = kzalloc(sizeof(*threads_new) * new_num_threads, GFP_KERNEL);
if (!threads_new)
goto err;
for (cpu = 0; cpu < num_online_cpus(); cpu++) {
threads_new[cpu] = launch_thread(cpu);
if (IS_ERR(threads_new[cpu])) {
ret = PTR_ERR(threads_new[cpu]);
threads_new[cpu] = NULL;
goto err;
}
}
}
_write_lock(&media_player_lock);
// check again
ret = 0;
if (num_play_streams >= n_play_streams && num_stream_packets >= n_stream_packets)
goto out;
memcpy(new_play_streams, play_streams, sizeof(*play_streams) * num_play_streams);
num_play_streams = n_play_streams;
old_play_streams = play_streams;
play_streams = new_play_streams;
memcpy(new_stream_packets, stream_packets, sizeof(*stream_packets) * num_stream_packets);
num_stream_packets = n_stream_packets;
old_stream_packets = stream_packets;
stream_packets = new_stream_packets;
if (!timer_threads) {
timer_threads = threads_new;
num_timer_threads = new_num_threads;
new_num_threads = 0;
threads_new = NULL;
}
out:
_write_unlock(&media_player_lock);
err:
shut_threads(threads_new, new_num_threads);
kfree(old_play_streams);
kfree(old_stream_packets);
return ret;
}
static int get_packet_stream(struct rtpengine_table *t, unsigned int *num) {
struct play_stream_packets *new_stream;
unsigned int idx = -1;
unsigned int i;
new_stream = kzalloc(sizeof(*new_stream), GFP_KERNEL);
if (!new_stream)
return -ENOMEM;
INIT_LIST_HEAD(&new_stream->packets);
INIT_LIST_HEAD(&new_stream->table_entry);
_rwlock_init(&new_stream->lock);
new_stream->table_id = t->id;
atomic_set(&new_stream->refcnt, 1);
for (i = 0; i < num_stream_packets; i++) {
_write_lock(&media_player_lock);
idx = atomic_fetch_add(1, &last_stream_packets_idx) % num_stream_packets;
if (stream_packets[idx]) {
idx = -1;
_write_unlock(&media_player_lock);
continue;
}
stream_packets[idx] = new_stream;
new_stream->idx = idx;
ref_packet_stream(new_stream);
_write_unlock(&media_player_lock);
break;
}
if (idx == -1) {
kfree(new_stream);
return -EBUSY;
}
_spin_lock(&t->player_lock);
list_add(&new_stream->table_entry, &t->packet_streams);
// hand over ref
new_stream = NULL;
t->num_packet_streams++;
// XXX race between adding to list and stop/free?
_spin_unlock(&t->player_lock);
*num = idx;
return 0;
}
static void free_play_stream_packet(struct play_stream_packet *p) {
//printk(KERN_WARNING "freeing stream packet %u\n", p->seq);
kfree(p->data);
kfree(p);
}
static int play_stream_packet(const struct rtpengine_play_stream_packet_info *info, size_t len) {
const char *data = info->data;
struct play_stream_packets *stream;
int ret = 0;
struct play_stream_packet *packet = NULL, *last;
//printk(KERN_WARNING "size %zu\n", len);
packet = kzalloc(sizeof(*packet), GFP_KERNEL);
if (!packet)
return -ENOMEM;
packet->len = len;
packet->data = kmalloc(len, GFP_KERNEL);
if (!packet)
goto out;
memcpy(packet->data, data, len);
packet->delay = ms_to_ktime(info->delay_ms);
packet->ts = info->delay_ts;
packet->duration_ts = info->duration_ts;
//printk(KERN_WARNING "new packet %p, delay %ld us\n", packet, (long int) ktime_to_us(packet->delay));
// XXX alloc skb
_read_lock(&media_player_lock);
ret = -ERANGE;
if (info->packet_stream_idx >= num_stream_packets)
goto out;
stream = stream_packets[info->packet_stream_idx];
ret = -ENOENT;
if (!stream)
goto out;
_write_lock(&stream->lock);
if (!list_empty(&stream->packets)) {
last = list_last_entry(&stream->packets, struct play_stream_packet, list);
if (ktime_after(last->delay, packet->delay)) {
_write_unlock(&stream->lock);
ret = -ELOOP;
goto out;
}
}
list_add_tail(&packet->list, &stream->packets);
packet->seq = stream->len;
stream->len++;
_write_unlock(&stream->lock);
packet = NULL;
ret = 0;
out:
_read_unlock(&media_player_lock);
if (packet)
free_play_stream_packet(packet);
return ret;
}
static int play_stream(struct rtpengine_table *t, const struct rtpengine_play_stream_info *info, unsigned int *num) {
struct play_stream *play_stream;
struct play_stream_packets *packets = NULL;
int ret;
unsigned int idx = -1;
unsigned int i;
struct interface_stats_block *iface_stats;
struct stream_stats *stats;
struct ssrc_stats *ssrc_stats;
if (!is_valid_address(&info->src_addr))
return -EINVAL;
if (!is_valid_address(&info->dst_addr))
return -EINVAL;
if (info->dst_addr.family != info->src_addr.family)
return -EINVAL;
if (validate_srtp(&info->encrypt))
return -EINVAL;
iface_stats = shm_map_resolve(info->iface_stats, sizeof(*iface_stats));
if (!iface_stats)
return -EFAULT;
stats = shm_map_resolve(info->stats, sizeof(*stats));
if (!stats)
return -EFAULT;
ssrc_stats = shm_map_resolve(info->ssrc_stats, sizeof(*ssrc_stats));
if (!ssrc_stats)
return -EFAULT;
ret = -ENOMEM;
play_stream = kzalloc(sizeof(*play_stream), GFP_KERNEL);
if (!play_stream)
goto out;
INIT_LIST_HEAD(&play_stream->table_entry);
play_stream->info = *info;
play_stream->table_id = t->id;
atomic_set(&play_stream->refcnt, 1);
_spin_lock_init(&play_stream->lock);
play_stream->info.stats = stats;
play_stream->info.iface_stats = iface_stats;
play_stream->info.ssrc_stats = ssrc_stats;
ret = 0;
_read_lock(&media_player_lock);
if (info->packet_stream_idx >= num_stream_packets)
ret = -ERANGE;
else {
packets = stream_packets[info->packet_stream_idx];
if (!packets)
ret = -ENOENT;
else
ref_packet_stream(packets);
}
_read_unlock(&media_player_lock);
if (ret)
goto out;
_read_lock(&packets->lock);
ret = -ENXIO;
if (list_empty(&packets->packets)) {
_read_unlock(&packets->lock);
goto out;
}
play_stream->packets = packets;
play_stream->position = list_first_entry(&packets->packets, struct play_stream_packet, list);
_read_unlock(&packets->lock);
packets = NULL; // ref handed over
for (i = 0; i < num_play_streams; i++) {
_write_lock(&media_player_lock);
idx = atomic_fetch_add(1, &last_play_stream_idx) % num_play_streams;
if (play_streams[idx]) {
_write_unlock(&media_player_lock);
idx = -1;
continue;
}
play_streams[idx] = play_stream;
ref_play_stream(play_stream);
play_stream->idx = idx;
_write_unlock(&media_player_lock);
break;
}
ret = -EBUSY;
if (idx == -1)
goto out;
_spin_lock(&t->player_lock);
list_add(&play_stream->table_entry, &t->play_streams);
ref_play_stream(play_stream);
t->num_play_streams++;
// XXX race between adding to list and stop/free?
_spin_unlock(&t->player_lock);
_spin_lock(&play_stream->lock);
play_stream->start_time = ktime_get();
crypto_context_init(&play_stream->encrypt, &info->encrypt);
ret = gen_rtp_session_keys(&play_stream->encrypt, &info->encrypt);
if (ret) {
_spin_unlock(&play_stream->lock);
goto out;
}
//printk(KERN_WARNING "start time %ld us\n", (long int) ktime_to_us(play_stream->start_time));
play_stream_schedule_packet(play_stream);
_spin_unlock(&play_stream->lock);
*num = idx;
ret = 0;
out:
if (play_stream)
unref_play_stream(play_stream);
if (packets)
unref_packet_stream(packets);
return ret;
}
// stream must be locked, reference must be held
static void end_of_stream(struct play_stream *stream) {
struct rtpengine_table *t;
if (stream->table_id != -1 && !list_empty(&stream->table_entry)) {
t = get_table(stream->table_id);
if (t) {
//printk(KERN_WARNING "removing stream %p from table\n", stream);
_spin_lock(&t->player_lock);
list_del_init(&stream->table_entry);
t->num_play_streams--;
_spin_unlock(&t->player_lock);
table_put(t);
unref_play_stream(stream);
}
}
stream->table_id = -1;
}
// stream lock is not held, reference must be held
static void do_stop_stream(struct play_stream *stream) {
struct timer_thread *tt;
struct play_stream *old_stream;
//printk(KERN_WARNING "stop stream %p\n", stream);
_spin_lock(&stream->lock);
end_of_stream(stream);
tt = stream->timer_thread;
stream->timer_thread = NULL;
if (tt) {
_spin_lock(&tt->tree_lock);
if (tt->scheduled == stream) {
//printk(KERN_WARNING "stream %p was scheduled\n", stream);
tt->scheduled = NULL;
unref_play_stream(stream);
}
else {
old_stream = btree_lookup64(&tt->tree, stream->tree_index);
if (old_stream == stream) {
//printk(KERN_WARNING "stream %p was in tree\n", stream);
btree_remove64(&tt->tree, stream->tree_index);
unref_play_stream(stream);
}
else {
//printk(KERN_ERR "stream %p not scheduled!\n", stream);
}
}
_spin_unlock(&tt->tree_lock);
}
_spin_unlock(&stream->lock);
}
static int stop_stream(struct rtpengine_table *t, unsigned int num) {
struct play_stream *stream;
int ret;
ret = 0;
_write_lock(&media_player_lock);
if (num >= num_play_streams)
ret = -ERANGE;
else {
stream = play_streams[num];
if (!stream)
ret = -ENOENT;
else
play_streams[num] = NULL;;
}
_write_unlock(&media_player_lock);
if (ret)
return ret;
do_stop_stream(stream);
// check if stream was released, wait if it wasn't
_spin_lock(&stream->lock);
while (stream->timer_thread) {
_spin_unlock(&stream->lock);
cpu_relax();
schedule();
_spin_lock(&stream->lock);
}
_spin_unlock(&stream->lock);
unref_play_stream(stream);
return 0;
}
static int cmd_free_packet_stream(struct rtpengine_table *t, unsigned int idx) {
struct play_stream_packets *stream = NULL;
int ret;
_write_lock(&media_player_lock);
ret = -ERANGE;
if (idx >= num_stream_packets)
goto out;
stream = stream_packets[idx];
ret = -ENOENT;
if (!stream)
goto out;
// steal reference
stream_packets[idx] = NULL;
ret = 0;
out:
_write_unlock(&media_player_lock);
if (!stream)
return ret;
_write_lock(&stream->lock);
idx = stream->idx;
stream->table_id = -1;
_write_unlock(&stream->lock);
if (idx != -1) {
_write_lock(&media_player_lock);
if (stream_packets[idx] == stream) {
stream_packets[idx] = NULL;
unref_packet_stream(stream);
}
_write_unlock(&media_player_lock);
}
if (!list_empty(&stream->table_entry)) {
_spin_lock(&t->player_lock);
list_del_init(&stream->table_entry);
t->num_packet_streams--;
_spin_unlock(&t->player_lock);
unref_packet_stream(stream);
}
unref_packet_stream(stream);
return 0;
}
static const size_t min_req_sizes[__REMG_LAST] = {
[REMG_INIT] = sizeof(struct rtpengine_command_init),
[REMG_ADD_TARGET] = sizeof(struct rtpengine_command_add_target),
[REMG_DEL_TARGET] = sizeof(struct rtpengine_command_del_target),
[REMG_ADD_DESTINATION] = sizeof(struct rtpengine_command_destination),
[REMG_ADD_CALL] = sizeof(struct rtpengine_command_add_call),
[REMG_DEL_CALL] = sizeof(struct rtpengine_command_del_call),
[REMG_ADD_STREAM] = sizeof(struct rtpengine_command_add_stream),
[REMG_DEL_STREAM] = sizeof(struct rtpengine_command_del_stream),
[REMG_PACKET] = sizeof(struct rtpengine_command_packet),
[REMG_INIT_PLAY_STREAMS]= sizeof(struct rtpengine_command_init_play_streams),
[REMG_GET_PACKET_STREAM]= sizeof(struct rtpengine_command_get_packet_stream),
[REMG_PLAY_STREAM_PACKET]= sizeof(struct rtpengine_command_play_stream_packet),
[REMG_PLAY_STREAM] = sizeof(struct rtpengine_command_play_stream),
[REMG_STOP_STREAM] = sizeof(struct rtpengine_command_stop_stream),
[REMG_FREE_PACKET_STREAM]= sizeof(struct rtpengine_command_free_packet_stream),
};
static const size_t max_req_sizes[__REMG_LAST] = {
[REMG_INIT] = sizeof(struct rtpengine_command_init),
[REMG_ADD_TARGET] = sizeof(struct rtpengine_command_add_target),
[REMG_DEL_TARGET] = sizeof(struct rtpengine_command_del_target),
[REMG_ADD_DESTINATION] = sizeof(struct rtpengine_command_destination),
[REMG_ADD_CALL] = sizeof(struct rtpengine_command_add_call),
[REMG_DEL_CALL] = sizeof(struct rtpengine_command_del_call),
[REMG_ADD_STREAM] = sizeof(struct rtpengine_command_add_stream),
[REMG_DEL_STREAM] = sizeof(struct rtpengine_command_del_stream),
[REMG_PACKET] = sizeof(struct rtpengine_command_packet) + 65535,
[REMG_INIT_PLAY_STREAMS]= sizeof(struct rtpengine_command_init_play_streams),
[REMG_GET_PACKET_STREAM]= sizeof(struct rtpengine_command_get_packet_stream),
[REMG_PLAY_STREAM_PACKET]= sizeof(struct rtpengine_command_play_stream_packet) + 65535,
[REMG_PLAY_STREAM] = sizeof(struct rtpengine_command_play_stream),
[REMG_STOP_STREAM] = sizeof(struct rtpengine_command_stop_stream),
[REMG_FREE_PACKET_STREAM]= sizeof(struct rtpengine_command_free_packet_stream),
};
static int rtpengine_init_table(struct rtpengine_table *t, struct rtpengine_init_info *init) {
int i;
if (t->rtpe_stats)
return -EBUSY;
t->rtpe_stats = shm_map_resolve(init->rtpe_stats, sizeof(*t->rtpe_stats));
if (!t->rtpe_stats)
return -EFAULT;
if (init->last_cmd != __REMG_LAST)
return -ERANGE;
for (i = 0; i < __REMG_LAST; i++)
if (init->msg_size[i] != min_req_sizes[i])
return -EMSGSIZE;
return 0;
}
static inline ssize_t proc_control_read_write(struct file *file, char __user *ubuf, size_t buflen,
int writeable)
{
struct inode *inode;
uint32_t id;
struct rtpengine_table *t;
int err;
enum rtpengine_command cmd;
char scratchbuf[512];
union {
struct rtpengine_command_init *init;
struct rtpengine_command_add_target *add_target;
struct rtpengine_command_del_target *del_target;
struct rtpengine_command_destination *destination;
struct rtpengine_command_add_call *add_call;
struct rtpengine_command_del_call *del_call;
struct rtpengine_command_add_stream *add_stream;
struct rtpengine_command_del_stream *del_stream;
struct rtpengine_command_packet *packet;
struct rtpengine_command_init_play_streams *init_play_streams;
struct rtpengine_command_get_packet_stream *get_packet_stream;
struct rtpengine_command_play_stream_packet *play_stream_packet;
struct rtpengine_command_play_stream *play_stream;
struct rtpengine_command_stop_stream *stop_stream;
struct rtpengine_command_free_packet_stream *free_packet_stream;
char *storage;
} msg;
// verify absolute minimum size
if (buflen < sizeof(cmd))
return -EIO;
// copy request header
if (copy_from_user(&cmd, ubuf, sizeof(cmd)))
return -EFAULT;
// verify request
if (cmd < 1 || cmd >= __REMG_LAST) {
printk(KERN_WARNING "xt_RTPENGINE unimplemented op %u\n", cmd);
return -EINVAL;
}
// verify request size
if (buflen < min_req_sizes[cmd])
return -EMSGSIZE;
if (buflen > max_req_sizes[cmd])
return -ERANGE;
// do we need an extra large storage buffer?
if (buflen > sizeof(scratchbuf)) {
msg.storage = kmalloc(buflen, GFP_KERNEL);
if (!msg.storage)
return -ENOMEM;
}
else
msg.storage = scratchbuf;
// get our table
inode = file->f_path.dentry->d_inode;
id = (uint32_t) (unsigned long) PDE_DATA(inode);
t = get_table(id);
err = -ENOENT;
if (!t)
goto err_free;
// copy in the entire request
err = -EFAULT;
if (copy_from_user(msg.storage, ubuf, buflen))
goto err_table_free;
// execute command
err = 0;
switch (cmd) {
case REMG_INIT:
err = rtpengine_init_table(t, &msg.init->init);
break;
case REMG_ADD_TARGET:
err = table_new_target(t, &msg.add_target->target);
break;
case REMG_DEL_TARGET:
err = table_del_target(t, &msg.del_target->local);
break;
case REMG_ADD_DESTINATION:
err = table_add_destination(t, &msg.destination->destination);
break;
case REMG_ADD_CALL:
err = -EINVAL;
if (writeable)
err = table_new_call(t, &msg.add_call->call);
break;
case REMG_DEL_CALL:
err = table_del_call(t, msg.del_call->call_idx);
break;
case REMG_ADD_STREAM:
err = -EINVAL;
if (writeable)
err = table_new_stream(t, &msg.add_stream->stream);
break;
case REMG_DEL_STREAM:
err = table_del_stream(t, &msg.del_stream->stream);
break;
case REMG_PACKET:
err = stream_packet(t, &msg.packet->packet, buflen - sizeof(*msg.packet));
break;
case REMG_INIT_PLAY_STREAMS:
err = init_play_streams(msg.init_play_streams->num_play_streams,
msg.init_play_streams->num_packet_streams);
break;
case REMG_GET_PACKET_STREAM:
err = -EINVAL;
if (writeable)
err = get_packet_stream(t, &msg.get_packet_stream->packet_stream_idx);
break;
case REMG_PLAY_STREAM_PACKET:
err = play_stream_packet(&msg.play_stream_packet->play_stream_packet,
buflen - sizeof(*msg.play_stream_packet));
break;
case REMG_PLAY_STREAM:
err = -EINVAL;
if (writeable)
err = play_stream(t, &msg.play_stream->info, &msg.play_stream->play_idx);
break;
case REMG_STOP_STREAM:
err = stop_stream(t, msg.stop_stream->play_idx);
break;
case REMG_FREE_PACKET_STREAM:
err = cmd_free_packet_stream(t, msg.free_packet_stream->packet_stream_idx);
break;
default:
printk(KERN_WARNING "xt_RTPENGINE unimplemented op %u\n", cmd);
err = -EINVAL;
break;
}
table_put(t);
if (err)
goto err_free;
if (writeable) {
err = -EFAULT;
if (copy_to_user(ubuf, msg.storage, buflen))
goto err_free;
}
if (msg.storage != scratchbuf)
kfree(msg.storage);
return buflen;
err_table_free:
table_put(t);
err_free:
if (msg.storage != scratchbuf)
kfree(msg.storage);
return err;
}
static ssize_t proc_control_write(struct file *file, const char __user *ubuf, size_t buflen, loff_t *off) {
return proc_control_read_write(file, (char __user *) ubuf, buflen, 0);
}
static ssize_t proc_control_read(struct file *file, char __user *ubuf, size_t buflen, loff_t *off) {
return proc_control_read_write(file, ubuf, buflen, 1);
}
// par can be NULL
static int send_proxy_packet4(struct sk_buff *skb, struct re_address *src, struct re_address *dst,
unsigned char tos, const struct xt_action_param *par)
{
struct iphdr *ih;
struct udphdr *uh;
unsigned int datalen;
struct net *net;
struct rtable *rt;
datalen = skb->len;
uh = (void *) skb_push(skb, sizeof(*uh));
skb_reset_transport_header(skb);
ih = (void *) skb_push(skb, sizeof(*ih));
skb_reset_network_header(skb);
DBG("datalen=%u network_header=%p transport_header=%p\n", datalen, skb_network_header(skb), skb_transport_header(skb));
datalen += sizeof(*uh);
*uh = (struct udphdr) {
.source = htons(src->port),
.dest = htons(dst->port),
.len = htons(datalen),
};
*ih = (struct iphdr) {
.version = 4,
.ihl = 5,
.tos = tos,
.tot_len = htons(sizeof(*ih) + datalen),
.ttl = 64,
.protocol = IPPROTO_UDP,
.saddr = src->u.ipv4,
.daddr = dst->u.ipv4,
};
skb->protocol = htons(ETH_P_IP);
net = NULL;
if (par)
net = PAR_STATE_NET(par);
if (!net && current && current->nsproxy)
net = current->nsproxy->net_ns;
if (!net)
goto drop;
rt = ip_route_output(net, dst->u.ipv4, src->u.ipv4, tos, 0);
if (IS_ERR(rt))
goto drop;
skb_dst_drop(skb);
skb_dst_set(skb, &rt->dst);
if (skb_dst(skb)->error)
goto drop;
skb->dev = skb_dst(skb)->dev;
if (skb->dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)) {
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum = 0;
udp4_hwcsum(skb, ih->saddr, ih->daddr);
}
else {
__wsum csum = skb_checksum(skb, skb_transport_offset(skb), datalen, 0);
uh->check = csum_tcpudp_magic(src->u.ipv4, dst->u.ipv4, datalen, IPPROTO_UDP,
csum);
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
skb->ip_summed = CHECKSUM_COMPLETE;
}
ip_select_ident(net, skb, NULL);
ip_local_out(net, skb->sk, skb);
return 0;
drop:
log_err("IPv4 routing failed");
kfree_skb(skb);
return -1;
}
// par can be NULL
static int send_proxy_packet6(struct sk_buff *skb, struct re_address *src, struct re_address *dst,
unsigned char tos, const struct xt_action_param *par)
{
struct ipv6hdr *ih;
struct udphdr *uh;
unsigned int datalen;
struct net *net;
struct dst_entry *dst_entry;
struct flowi6 fl6;
datalen = skb->len;
uh = (void *) skb_push(skb, sizeof(*uh));
skb_reset_transport_header(skb);
ih = (void *) skb_push(skb, sizeof(*ih));
skb_reset_network_header(skb);
DBG("datalen=%u network_header=%p transport_header=%p\n", datalen, skb_network_header(skb), skb_transport_header(skb));
datalen += sizeof(*uh);
*uh = (struct udphdr) {
.source = htons(src->port),
.dest = htons(dst->port),
.len = htons(datalen),
};
*ih = (struct ipv6hdr) {
.version = 6,
.priority = (tos & 0xf0) >> 4,
.flow_lbl = {(tos & 0xf) << 4, 0, 0},
.payload_len = htons(datalen),
.nexthdr = IPPROTO_UDP,
.hop_limit = 64,
};
memcpy(&ih->saddr, src->u.ipv6, sizeof(ih->saddr));
memcpy(&ih->daddr, dst->u.ipv6, sizeof(ih->daddr));
skb->protocol = htons(ETH_P_IPV6);
net = NULL;
if (par)
net = PAR_STATE_NET(par);
if (!net && current && current->nsproxy)
net = current->nsproxy->net_ns;
if (!net)
goto drop;
memset(&fl6, 0, sizeof(fl6));
memcpy(&fl6.saddr, src->u.ipv6, sizeof(fl6.saddr));
memcpy(&fl6.daddr, dst->u.ipv6, sizeof(fl6.daddr));
fl6.flowi6_mark = skb->mark;
dst_entry = ip6_route_output(net, NULL, &fl6);
if (!dst_entry)
goto drop;
if (dst_entry->error) {
dst_release(dst_entry);
goto drop;
}
skb_dst_drop(skb);
skb_dst_set(skb, dst_entry);
skb->dev = skb_dst(skb)->dev;
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct udphdr, check);
if (skb->dev->features & (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM)) {
skb->ip_summed = CHECKSUM_PARTIAL;
uh->check = ~csum_ipv6_magic(&ih->saddr, &ih->daddr, datalen, IPPROTO_UDP, 0);
}
else {
__wsum csum = skb_checksum(skb, skb_transport_offset(skb), datalen, 0);
uh->check = csum_ipv6_magic(&ih->saddr, &ih->daddr, datalen, IPPROTO_UDP, csum);
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
skb->ip_summed = CHECKSUM_COMPLETE;
}
ip6_local_out(net, skb->sk, skb);
return 0;
drop:
log_err("IPv6 routing failed");
kfree_skb(skb);
return -1;
}
static int send_proxy_packet(struct sk_buff *skb, struct re_address *src, struct re_address *dst,
unsigned char tos, const struct xt_action_param *par)
{
if (src->family != dst->family) {
log_err("address family mismatch");
goto drop;
}
switch (src->family) {
case AF_INET:
return send_proxy_packet4(skb, src, dst, tos, par);
break;
case AF_INET6:
return send_proxy_packet6(skb, src, dst, tos, par);
break;
default:
log_err("unsupported address family");
goto drop;
}
drop:
kfree_skb(skb);
return -1;
}
/* XXX shared code */
static void parse_rtp(struct rtp_parsed *rtp, struct sk_buff *skb) {
struct rtp_extension *ext;
int ext_len;
if (skb->len < sizeof(*rtp->rtp_header))
goto error;
rtp->rtp_header = (void *) skb->data;
if ((rtp->rtp_header->v_p_x_cc & 0xc0) != 0x80) /* version 2 */
goto error;
rtp->header_len = sizeof(*rtp->rtp_header);
/* csrc list */
rtp->header_len += (rtp->rtp_header->v_p_x_cc & 0xf) * 4;
if (skb->len < rtp->header_len)
goto error;
rtp->payload = skb->data + rtp->header_len;
rtp->payload_len = skb->len - rtp->header_len;
if ((rtp->rtp_header->v_p_x_cc & 0x10)) {
/* extension */
if (rtp->payload_len < sizeof(*ext))
goto error;
ext = (void *) rtp->payload;
ext_len = 4 + ntohs(ext->length) * 4;
if (rtp->payload_len < ext_len)
goto error;
rtp->payload += ext_len;
rtp->payload_len -= ext_len;
rtp->header_len += ext_len;
}
DBG("rtp header parsed, payload length is %u\n", rtp->payload_len);
rtp->ok = 1;
return;
error:
rtp->ok = 0;
}
/* XXX shared code */
static uint32_t rtp_packet_index(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_header *rtp,
int ssrc_idx,
struct ssrc_stats **ssrc_stats)
{
uint16_t seq;
uint32_t index;
unsigned long flags;
uint16_t s_l;
uint32_t roc;
uint32_t v;
if (ssrc_idx < 0)
ssrc_idx = 0;
seq = ntohs(rtp->seq_num);
spin_lock_irqsave(&c->lock, flags);
/* rfc 3711 section 3.3.1 */
index = atomic_read(&ssrc_stats[ssrc_idx]->ext_seq);
if (unlikely(!index))
index = seq;
/* rfc 3711 appendix A, modified, and sections 3.3 and 3.3.1 */
s_l = (index & 0x0000ffffULL);
roc = (index & 0xffff0000ULL) >> 16;
v = 0;
if (s_l < 0x8000) {
if (((seq - s_l) > 0x8000) && roc > 0)
v = (roc - 1) % 0x10000;
else
v = roc;
} else {
if ((s_l - 0x8000) > seq)
v = (roc + 1) % 0x10000;
else
v = roc;
}
index = (v << 16) | seq;
atomic_set(&ssrc_stats[ssrc_idx]->ext_seq, index);
spin_unlock_irqrestore(&c->lock, flags);
return index;
}
static void update_packet_index(struct re_crypto_context *c,
struct rtpengine_srtp *s, uint32_t idx, int ssrc_idx,
struct ssrc_stats *ssrc_stats[RTPE_NUM_SSRC_TRACKING])
{
if (ssrc_idx < 0)
ssrc_idx = 0;
atomic_set(&ssrc_stats[ssrc_idx]->ext_seq, idx);
}
static int srtp_hash(unsigned char *hmac,
struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t pkt_idx)
{
uint32_t roc;
struct shash_desc *dsc;
size_t alloc_size;
if (!s->rtp_auth_tag_len)
return 0;
roc = htonl((pkt_idx & 0xffff0000ULL) >> 16);
alloc_size = sizeof(*dsc) + crypto_shash_descsize(c->shash);
dsc = kmalloc(alloc_size, GFP_ATOMIC);
if (!dsc)
return -1;
memset(dsc, 0, alloc_size);
dsc->tfm = c->shash;
if (crypto_shash_init(dsc))
goto error;
crypto_shash_update(dsc, (void *) r->rtp_header, r->header_len + r->payload_len);
crypto_shash_update(dsc, (void *) &roc, sizeof(roc));
crypto_shash_final(dsc, hmac);
kfree(dsc);
DBG("calculated HMAC %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
hmac[0], hmac[1], hmac[2], hmac[3],
hmac[4], hmac[5], hmac[6], hmac[7],
hmac[8], hmac[9], hmac[10], hmac[11],
hmac[12], hmac[13], hmac[14], hmac[15],
hmac[16], hmac[17], hmac[18], hmac[19]);
return 0;
error:
kfree(dsc);
return -1;
}
static int srtcp_hash(unsigned char *hmac,
struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t pkt_idx)
{
struct shash_desc *dsc;
size_t alloc_size;
if (!s->rtcp_auth_tag_len)
return 0;
alloc_size = sizeof(*dsc) + crypto_shash_descsize(c->shash);
dsc = kmalloc(alloc_size, GFP_ATOMIC);
if (!dsc)
return -1;
memset(dsc, 0, alloc_size);
dsc->tfm = c->shash;
if (crypto_shash_init(dsc))
goto error;
crypto_shash_update(dsc, (void *) r->rtcp_header, r->header_len + r->payload_len);
crypto_shash_final(dsc, hmac);
kfree(dsc);
DBG("calculated RTCP HMAC %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
hmac[0], hmac[1], hmac[2], hmac[3],
hmac[4], hmac[5], hmac[6], hmac[7],
hmac[8], hmac[9], hmac[10], hmac[11],
hmac[12], hmac[13], hmac[14], hmac[15],
hmac[16], hmac[17], hmac[18], hmac[19]);
return 0;
error:
kfree(dsc);
return -1;
}
/* XXX shared code */
static void rtp_append_mki(struct rtp_parsed *r, struct rtpengine_srtp *c) {
unsigned char *p;
if (!c->mki_len)
return;
p = r->payload + r->payload_len;
memcpy(p, c->mki, c->mki_len);
r->payload_len += c->mki_len;
}
static int srtp_authenticate(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t pkt_idx)
{
unsigned char hmac[20];
if (!r->rtp_header)
return 0;
if (s->hmac == REH_NULL) {
rtp_append_mki(r, s);
return 0;
}
if (!c->hmac)
return 0;
if (!c->shash)
return -1;
if (srtp_hash(hmac, c, s, r, pkt_idx))
return -1;
rtp_append_mki(r, s);
memcpy(r->payload + r->payload_len, hmac, s->rtp_auth_tag_len);
r->payload_len += s->rtp_auth_tag_len;
return 0;
}
static int srtcp_authenticate(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t pkt_idx)
{
unsigned char hmac[20];
if (!r->rtcp_header)
return 0;
if (s->hmac == REH_NULL) {
rtp_append_mki(r, s);
return 0;
}
if (!c->hmac)
return 0;
if (!c->shash)
return -1;
if (srtcp_hash(hmac, c, s, r, pkt_idx))
return -1;
rtp_append_mki(r, s);
memcpy(r->payload + r->payload_len, hmac, s->rtcp_auth_tag_len);
r->payload_len += s->rtp_auth_tag_len;
return 0;
}
static int srtp_auth_validate(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx_p, int ssrc_idx, struct ssrc_stats *ssrc_stats[RTPE_NUM_SSRC_TRACKING])
{
unsigned char *auth_tag;
unsigned char hmac[20];
uint32_t pkt_idx = *pkt_idx_p;
if (s->hmac == REH_NULL)
return 0;
if (!c->hmac)
return 0;
if (!c->shash)
return -1;
if (r->payload_len < s->rtp_auth_tag_len)
return -1;
r->payload_len -= s->rtp_auth_tag_len;
auth_tag = r->payload + r->payload_len;
if (r->payload_len < s->mki_len)
return -1;
r->payload_len -= s->mki_len;
if (!s->rtp_auth_tag_len)
return 0;
DBG("packet auth tag %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
auth_tag[0], auth_tag[1], auth_tag[2], auth_tag[3],
auth_tag[4], auth_tag[5], auth_tag[6], auth_tag[7],
auth_tag[8], auth_tag[9]);
if (srtp_hash(hmac, c, s, r, pkt_idx))
return -1;
if (!memcmp(auth_tag, hmac, s->rtp_auth_tag_len))
goto ok;
/* possible ROC mismatch, attempt to guess */
/* first, let's see if we missed a rollover */
pkt_idx += 0x10000;
if (srtp_hash(hmac, c, s, r, pkt_idx))
return -1;
if (!memcmp(auth_tag, hmac, s->rtp_auth_tag_len))
goto ok_update;
/* or maybe we did a rollover too many */
if (pkt_idx >= 0x20000) {
pkt_idx -= 0x20000;
if (srtp_hash(hmac, c, s, r, pkt_idx))
return -1;
if (!memcmp(auth_tag, hmac, s->rtp_auth_tag_len))
goto ok_update;
}
/* last guess: reset ROC to zero */
pkt_idx &= 0xffff;
if (srtp_hash(hmac, c, s, r, pkt_idx))
return -1;
if (!memcmp(auth_tag, hmac, s->rtp_auth_tag_len))
goto ok_update;
return -1;
ok_update:
*pkt_idx_p = pkt_idx;
update_packet_index(c, s, pkt_idx, ssrc_idx, ssrc_stats);
ok:
return 0;
}
static int srtcp_auth_validate(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx_p)
{
uint32_t idx;
unsigned char *auth_tag = NULL;
unsigned char hmac[20];
if (!c->cipher->decrypt_rtcp)
return 0;
if (s->rtcp_auth_tag_len) {
// we have an auth tag to verify
if (s->hmac == REH_NULL)
return -1;
if (!c->hmac)
return -1;
if (!c->shash)
return -1;
// extract auth tag
if (r->payload_len < s->rtcp_auth_tag_len)
return -1;
auth_tag = r->payload + r->payload_len - s->rtcp_auth_tag_len;
r->payload_len -= s->rtcp_auth_tag_len;
}
// skip MKI
if (r->payload_len < s->mki_len)
return -1;
r->payload_len -= s->mki_len;
// extract index
if (r->payload_len < sizeof(idx))
return -1;
memcpy(&idx, r->payload + r->payload_len - sizeof(idx), sizeof(idx));
idx = ntohl(idx);
if (auth_tag) {
if (srtcp_hash(hmac, c, s, r, idx))
return -1;
if (memcmp(auth_tag, hmac, s->rtcp_auth_tag_len))
return -1;
}
r->payload_len -= sizeof(idx);
if ((idx & 0x80000000ULL)) {
*pkt_idx_p = idx & ~0x80000000ULL;
return 1; // decrypt
}
*pkt_idx_p = idx;
return 0;
}
/* XXX shared code */
static int srtXp_encrypt_aes_cm(struct re_crypto_context *c,
struct rtpengine_srtp *s, uint32_t ssrc,
char *out, const char *in, size_t len,
uint32_t *pkt_idxp)
{
uint32_t pkt_idx = *pkt_idxp;
unsigned char iv[16];
uint32_t *ivi;
uint32_t idxh, idxl;
memcpy(iv, c->session_salt, 14);
iv[14] = iv[15] = '\0';
ivi = (void *) iv;
idxh = htonl((pkt_idx & 0xffff0000ULL) >> 16);
idxl = htonl((pkt_idx & 0x0000ffffULL) << 16);
ivi[1] ^= ssrc;
ivi[2] ^= idxh;
ivi[3] ^= idxl;
aes_ctr(out, in, len, c->tfm[0], iv);
return 0;
}
static int srtp_encrypt_aes_cm(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx)
{
return srtXp_encrypt_aes_cm(c, s, r->rtp_header->ssrc, r->payload, r->payload, r->payload_len, pkt_idx);
}
static int srtcp_encrypt_aes_cm(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx)
{
return srtXp_encrypt_aes_cm(c, s, r->rtcp_header->ssrc, r->payload, r->payload, r->payload_len, pkt_idx);
}
static int srtp_encrypt_aes_f8(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idxp)
{
uint64_t pkt_idx = *pkt_idxp;
unsigned char iv[16];
uint32_t roc;
iv[0] = 0;
memcpy(&iv[1], &r->rtp_header->m_pt, 11);
roc = htonl((pkt_idx & 0xffff0000ULL) >> 16);
memcpy(&iv[12], &roc, sizeof(roc));
aes_f8(r->payload, r->payload_len, c->tfm[0], c->tfm[1], iv);
return 0;
}
static int srtcp_encrypt_aes_f8(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx)
{
unsigned char iv[16];
uint32_t i;
memset(iv, 0, 4);
i = htonl(0x80000000ULL | *pkt_idx);
memcpy(&iv[4], &i, 4);
memcpy(&iv[8], r->rtcp_header, 8); /* v, p, rc, pt, length, ssrc */
aes_f8(r->payload, r->payload_len, c->tfm[0], c->tfm[1], iv);
return 0;
}
union aes_gcm_rtp_iv {
unsigned char bytes[12];
struct {
uint16_t zeros;
uint32_t ssrc;
uint32_t roq;
uint16_t seq;
} __attribute__((__packed__));
} __attribute__((__packed__));
static int srtp_encrypt_aes_gcm(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idxp)
{
uint32_t pkt_idx = *pkt_idxp;
union aes_gcm_rtp_iv iv;
struct aead_request *req;
struct scatterlist sg[2];
int ret;
if (s->session_salt_len != 12)
return -EINVAL;
memcpy(iv.bytes, c->session_salt, 12);
iv.ssrc ^= r->rtp_header->ssrc;
iv.roq ^= htonl((pkt_idx & 0xffff0000ULL) >> 16);
iv.seq ^= htons( pkt_idx & 0x0000ffffULL);
req = aead_request_alloc(c->aead, GFP_ATOMIC);
if (!req)
return -ENOMEM;
if (IS_ERR(req))
return PTR_ERR(req);
sg_init_table(sg, ARRAY_SIZE(sg));
sg_set_buf(&sg[0], r->rtp_header, r->header_len);
sg_set_buf(&sg[1], r->payload, r->payload_len + 16); // guaranteed to have space after skb_copy_expand
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, r->header_len);
aead_request_set_crypt(req, sg, sg, r->payload_len, iv.bytes);
ret = crypto_aead_encrypt(req);
aead_request_free(req);
if (ret == 0)
r->payload_len += 16;
return ret;
}
union aes_gcm_rtcp_iv {
unsigned char bytes[12];
struct {
uint16_t zeros_a;
uint32_t ssrc;
uint16_t zeros_b;
uint32_t srtcp;
} __attribute__((__packed__));
} __attribute__((__packed__));
static int srtcp_encrypt_aes_gcm(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx)
{
union aes_gcm_rtcp_iv iv;
struct aead_request *req;
struct scatterlist sg[3];
int ret;
uint32_t e_idx;
if (s->session_salt_len != 12)
return -EINVAL;
memcpy(iv.bytes, c->session_salt, 12);
iv.ssrc ^= r->rtcp_header->ssrc;
iv.srtcp ^= htonl(*pkt_idx & 0x007fffffffULL);
e_idx = htonl((*pkt_idx & 0x007fffffffULL) | 0x80000000ULL);
req = aead_request_alloc(c->aead, GFP_ATOMIC);
if (!req)
return -ENOMEM;
if (IS_ERR(req))
return PTR_ERR(req);
sg_init_table(sg, ARRAY_SIZE(sg));
sg_set_buf(&sg[0], r->rtcp_header, r->header_len);
sg_set_buf(&sg[1], &e_idx, sizeof(e_idx));
sg_set_buf(&sg[2], r->payload, r->payload_len + 16); // guaranteed to have space after skb_copy_expand
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, r->header_len + sizeof(e_idx));
aead_request_set_crypt(req, sg, sg, r->payload_len, iv.bytes);
ret = crypto_aead_encrypt(req);
aead_request_free(req);
if (ret == 0)
r->payload_len += 16;
return ret;
}
static int srtp_decrypt_aes_gcm(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idxp)
{
uint32_t pkt_idx = *pkt_idxp;
union aes_gcm_rtp_iv iv;
struct aead_request *req;
struct scatterlist sg[2];
int ret;
int guess = 0;
char *copy = NULL;
if (s->session_salt_len != 12)
return -EINVAL;
if (r->payload_len < 16)
return -EINVAL;
do {
memcpy(iv.bytes, c->session_salt, 12);
iv.ssrc ^= r->rtp_header->ssrc;
iv.roq ^= htonl((pkt_idx & 0x00ffffffff0000ULL) >> 16);
iv.seq ^= htons(pkt_idx & 0x00ffffULL);
req = aead_request_alloc(c->aead, GFP_ATOMIC);
if (!req)
return -ENOMEM;
if (IS_ERR(req))
return PTR_ERR(req);
sg_init_table(sg, ARRAY_SIZE(sg));
sg_set_buf(&sg[0], r->rtp_header, r->header_len);
sg_set_buf(&sg[1], r->payload, r->payload_len);
// make copy of payload in case the decyption clobbers it
copy = kmalloc(r->payload_len, GFP_ATOMIC);
if (copy)
memcpy(copy, r->payload, r->payload_len);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, r->header_len);
aead_request_set_crypt(req, sg, sg, r->payload_len, iv.bytes);
ret = crypto_aead_decrypt(req);
aead_request_free(req);
if (ret == 0) {
r->payload_len -= 16;
break;
}
if (ret != -EBADMSG)
break;
// authentication failed: restore payload and do some ROC guessing
if (!copy)
break;
memcpy(r->payload, copy, r->payload_len);
if (guess == 0)
pkt_idx += 0x10000;
else if (guess == 1)
pkt_idx -= 0x20000;
else if (guess == 2)
pkt_idx &= 0xffff;
else
break;
guess++;
} while (1);
if (copy)
kfree(copy);
if (ret == 0 && guess != 0) {
*pkt_idxp = pkt_idx;
ret = 1;
}
return ret;
}
static int srtcp_decrypt_aes_gcm(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx)
{
union aes_gcm_rtcp_iv iv;
struct aead_request *req;
struct scatterlist sg[3];
int ret;
uint32_t e_idx;
if (s->session_salt_len != 12)
return -EINVAL;
if (r->payload_len < 16)
return -EINVAL;
memcpy(iv.bytes, c->session_salt, 12);
iv.ssrc ^= r->rtcp_header->ssrc;
iv.srtcp ^= htonl(*pkt_idx & 0x007fffffffULL);
e_idx = htonl((*pkt_idx & 0x007fffffffULL) | 0x80000000ULL);
req = aead_request_alloc(c->aead, GFP_ATOMIC);
if (!req)
return -ENOMEM;
if (IS_ERR(req))
return PTR_ERR(req);
sg_init_table(sg, ARRAY_SIZE(sg));
sg_set_buf(&sg[0], r->rtcp_header, r->header_len);
sg_set_buf(&sg[1], &e_idx, sizeof(e_idx));
sg_set_buf(&sg[2], r->payload, r->payload_len);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, r->header_len + sizeof(e_idx));
aead_request_set_crypt(req, sg, sg, r->payload_len, iv.bytes);
ret = crypto_aead_decrypt(req);
aead_request_free(req);
if (ret == 0)
r->payload_len -= 16;
return ret;
}
static inline int srtp_encrypt(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t pkt_idx)
{
if (!r->rtp_header)
return 0;
if (!c->cipher->encrypt_rtp)
return 0;
return c->cipher->encrypt_rtp(c, s, r, &pkt_idx);
}
static inline int srtcp_encrypt(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idxp)
{
int ret;
uint32_t idx;
if (!r->rtcp_header)
return 0;
if (!c->cipher->encrypt_rtcp)
return 0;
ret = c->cipher->encrypt_rtcp(c, s, r, pkt_idxp);
if (ret)
return ret;
idx = htonl(0x80000000ULL | *pkt_idxp);
memcpy(r->payload + r->payload_len, &idx, sizeof(idx));
r->payload_len += sizeof(idx);
(*pkt_idxp)++;
return 0;
}
static inline int srtp_decrypt(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t *pkt_idx)
{
if (!c->cipher->decrypt_rtp)
return 0;
return c->cipher->decrypt_rtp(c, s, r, pkt_idx);
}
static inline int srtcp_decrypt(struct re_crypto_context *c,
struct rtpengine_srtp *s, struct rtp_parsed *r,
uint32_t pkt_idx)
{
if (!c->cipher->decrypt_rtcp)
return 0;
return c->cipher->decrypt_rtcp(c, s, r, &pkt_idx);
}
static inline int is_muxed_rtcp(struct sk_buff *skb) {
// XXX shared code
unsigned char m_pt;
if (skb->len < 8) // minimum RTCP size
return 0;
m_pt = skb->data[1];
if (m_pt < 194)
return 0;
if (m_pt > 223)
return 0;
return 1;
}
static inline int is_rtcp_fb_packet(struct sk_buff *skb) {
unsigned char m_pt;
size_t left = skb->len;
size_t offset = 0;
unsigned int packets = 0;
uint16_t len;
while (1) {
if (left < 8) // minimum RTCP size
return 0;
m_pt = skb->data[offset + 1];
// only RTPFB and PSFB
if (m_pt != 205 && m_pt != 206)
return 0;
// length check
len = (((unsigned char) skb->data[offset + 2]) << 8)
| ((unsigned char) skb->data[offset + 3]);
len++;
len <<= 2;
if (len > left) // invalid
return 0;
left -= len;
offset += len;
if (packets++ >= 8) // limit number of compound packets
return 0;
}
return 1;
}
static inline int is_stun(struct rtpengine_target *g, unsigned int datalen, unsigned char *skb_data) {
uint32_t *u32;
if (!g->target.stun)
return 0;
if (datalen < 28)
return 0;
if ((datalen & 0x3))
return 0;
u32 = (void *) skb_data;
if (u32[1] != htonl(0x2112A442UL)) /* magic cookie */
return 0;
if ((u32[0] & htonl(0xc0000003UL))) /* zero bits required by rfc */
return 0;
u32 = (void *) &skb_data[datalen - 8];
if (u32[0] != htonl(0x80280004UL)) /* required fingerprint attribute */
return 0;
return 1; // probably STUN
}
static inline int is_dtls(struct sk_buff *skb) {
if (skb->len < 1)
return 0;
if (skb->data[0] < 20)
return 0;
if (skb->data[0] > 63)
return 0;
return 1;
}
static int rtp_payload_match(const void *a, const void *bp) {
const struct rtp_stats *const *b = bp;
const struct rtp_stats *A = a, *B = *b;
if (A->payload_type < B->payload_type)
return -1;
if (A->payload_type > B->payload_type)
return 1;
return 0;
}
static inline int rtp_payload_type(const struct rtp_header *hdr, const struct rtpengine_target_info *tg,
int *last_pt)
{
struct rtp_stats pt;
struct rtp_stats *const *pmatch;
pt.payload_type = hdr->m_pt & 0x7f;
if (*last_pt < tg->num_payload_types) {
pmatch = &tg->pt_stats[*last_pt];
if (rtp_payload_match(&pt, pmatch) == 0)
goto found;
}
pmatch = bsearch(&pt, tg->pt_stats, tg->num_payload_types, sizeof(*pmatch), rtp_payload_match);
if (!pmatch)
return -1;
found:
*last_pt = pmatch - tg->pt_stats;
return *last_pt;
}
static struct sk_buff *intercept_skb_copy(struct sk_buff *oskb, const struct re_address *src) {
struct sk_buff *ret;
struct udphdr *uh;
struct iphdr *ih;
struct ipv6hdr *ih6;
ret = skb_copy_expand(oskb, MAX_HEADER, MAX_SKB_TAIL_ROOM, GFP_ATOMIC);
if (!ret)
return NULL;
skb_gso_reset(ret);
// restore original header. it's still present in the copied skb, so we just need
// to push back our head room. the payload lengths might be wrong and must be fixed.
// checksums might also be wrong, but can be ignored.
// restore transport header
skb_push(ret, ret->data - skb_transport_header(ret));
uh = (void *) skb_transport_header(ret);
uh->len = htons(ret->len);
// restore network header
skb_push(ret, ret->data - skb_network_header(ret));
// restore network length field
switch (src->family) {
case AF_INET:
ih = (void *) skb_network_header(ret);
ih->tot_len = htons(ret->len);
break;
case AF_INET6:
ih6 = (void *) skb_network_header(ret);
ih6->payload_len = htons(ret->len - sizeof(*ih6));
break;
default:
kfree_skb(ret);
return NULL;
}
return ret;
}
static void proxy_packet_output_rtcp(struct sk_buff *skb, struct rtpengine_output *o,
struct rtp_parsed *rtp, int ssrc_idx)
{
unsigned int pllen;
uint32_t pkt_idx, tmp_idx;
unsigned long flags;
if (!rtp->rtcp)
return;
// SRTCP
if (unlikely(ssrc_idx < 0))
ssrc_idx = 0;
spin_lock_irqsave(&o->encrypt_rtcp.lock, flags);
tmp_idx = pkt_idx = atomic_read(&o->output.ssrc_stats[ssrc_idx]->rtcp_seq);
spin_unlock_irqrestore(&o->encrypt_rtcp.lock, flags);
pllen = rtp->payload_len;
srtcp_encrypt(&o->encrypt_rtcp, &o->output.encrypt, rtp, &tmp_idx);
srtcp_authenticate(&o->encrypt_rtcp, &o->output.encrypt, rtp, pkt_idx);
skb_put(skb, rtp->payload_len - pllen);
atomic_set(&o->output.ssrc_stats[ssrc_idx]->rtcp_seq, tmp_idx);
}
static uint32_t proxy_packet_srtp_encrypt(struct sk_buff *skb, struct re_crypto_context *ctx,
struct rtpengine_srtp *srtp,
struct rtp_parsed *rtp, int ssrc_idx,
struct ssrc_stats **ssrc_stats)
{
uint32_t pkt_idx;
unsigned int pllen;
pkt_idx = rtp_packet_index(ctx, srtp, rtp->rtp_header, ssrc_idx, ssrc_stats);
pllen = rtp->payload_len;
srtp_encrypt(ctx, srtp, rtp, pkt_idx);
srtp_authenticate(ctx, srtp, rtp, pkt_idx);
skb_put(skb, rtp->payload_len - pllen);
return pkt_idx;
}
static bool proxy_packet_output_rtXp(struct sk_buff *skb, struct rtpengine_output *o,
int rtp_pt_idx,
struct rtp_parsed *rtp, int ssrc_idx)
{
int i;
uint32_t pkt_idx;
if (!rtp->ok) {
proxy_packet_output_rtcp(skb, o, rtp, ssrc_idx);
return true;
}
// pattern rewriting
if (rtp_pt_idx >= 0) {
if (o->output.pt_output[rtp_pt_idx].min_payload_len
&& rtp->payload_len < o->output.pt_output[rtp_pt_idx].min_payload_len)
return false;
if (o->output.pt_output[rtp_pt_idx].replace_pattern_len) {
if (o->output.pt_output[rtp_pt_idx].replace_pattern_len == 1)
memset(rtp->payload, o->output.pt_output[rtp_pt_idx].replace_pattern[0],
rtp->payload_len);
else {
for (i = 0; i < rtp->payload_len;
i += o->output.pt_output[rtp_pt_idx].replace_pattern_len)
memcpy(&rtp->payload[i],
o->output.pt_output[rtp_pt_idx].replace_pattern,
o->output.pt_output[rtp_pt_idx].replace_pattern_len);
}
}
}
// SSRC substitution and seq manipulation
if (likely(ssrc_idx >= 0)) {
rtp->rtp_header->seq_num = htons(ntohs(rtp->rtp_header->seq_num)
+ o->output.seq_offset[ssrc_idx]);
if (o->output.ssrc_subst && likely(o->output.ssrc_out[ssrc_idx]))
rtp->rtp_header->ssrc = o->output.ssrc_out[ssrc_idx];
}
pkt_idx = proxy_packet_srtp_encrypt(skb, &o->encrypt_rtp, &o->output.encrypt,
rtp, ssrc_idx, o->output.ssrc_stats);
if (ssrc_idx >= 0 && o->output.ssrc_stats[ssrc_idx]) {
atomic64_inc(&o->output.ssrc_stats[ssrc_idx]->packets);
atomic64_add(rtp->payload_len, &o->output.ssrc_stats[ssrc_idx]->bytes);
atomic_set(&o->output.ssrc_stats[ssrc_idx]->ext_seq, pkt_idx);
atomic_set(&o->output.ssrc_stats[ssrc_idx]->timestamp, ntohl(rtp->rtp_header->timestamp));
}
return true;
}
static int send_proxy_packet_output(struct sk_buff *skb, struct rtpengine_target *g,
int rtp_pt_idx,
struct rtpengine_output *o, struct rtp_parsed *rtp, int ssrc_idx,
const struct xt_action_param *par)
{
bool send_or_not = proxy_packet_output_rtXp(skb, o, rtp_pt_idx, rtp, ssrc_idx);
if (!send_or_not) {
kfree_skb(skb);
return 0;
}
return send_proxy_packet(skb, &o->output.src_addr, &o->output.dst_addr, o->output.tos, par);
}
static void rtp_stats(struct rtpengine_target *g, struct rtp_parsed *rtp, s64 arrival_time, int pt_idx,
int ssrc_idx, struct global_stats_counter *rtpe_stats)
{
unsigned long flags;
struct ssrc_stats *s = g->target.ssrc_stats[ssrc_idx];
uint16_t old_seq_trunc;
uint32_t last_seq;
uint16_t seq_diff;
uint32_t clockrate;
uint32_t transit;
int32_t d;
uint32_t new_seq;
uint16_t seq = ntohs(rtp->rtp_header->seq_num);
uint32_t ts = ntohl(rtp->rtp_header->timestamp);
atomic64_inc(&s->packets);
atomic64_add(rtp->payload_len, &s->bytes);
atomic_set(&s->timestamp, ts);
spin_lock_irqsave(&g->ssrc_stats_lock, flags);
// track sequence numbers and lost frames
last_seq = atomic_read(&s->ext_seq);
new_seq = last_seq;
// old seq or seq reset?
old_seq_trunc = last_seq & 0xffff;
seq_diff = seq - old_seq_trunc;
if (seq_diff == 0 || seq_diff >= 0xfeff) // old/dup seq - ignore
;
else if (seq_diff > 0x100) {
// reset seq and loss tracker
new_seq = seq;
atomic_set(&s->ext_seq, seq);
s->lost_bits = -1;
}
else {
// seq wrap?
new_seq = (last_seq & 0xffff0000) | seq;
while (new_seq < last_seq) {
new_seq += 0x10000;
if ((new_seq & 0xffff0000) == 0) // ext seq wrapped
break;
}
seq_diff = new_seq - last_seq;
atomic_set(&s->ext_seq, new_seq);
// shift loss tracker bit field and count losses
if (seq_diff >= (sizeof(s->lost_bits) * 8)) {
// complete loss
atomic_add(sizeof(s->lost_bits) * 8, &s->total_lost);
atomic64_add(sizeof(s->lost_bits) * 8, &g->target.iface_stats->s.packets_lost);
atomic64_add(sizeof(s->lost_bits) * 8, &rtpe_stats->packets_lost);
s->lost_bits = -1;
}
else {
while (seq_diff) {
// shift out one bit and see if we lost it
if ((s->lost_bits & 0x80000000) == 0) {
atomic_inc(&s->total_lost);
atomic64_inc(&g->target.iface_stats->s.packets_lost);
atomic64_inc(&rtpe_stats->packets_lost);
}
s->lost_bits <<= 1;
seq_diff--;
}
}
}
// track this frame as being seen
seq_diff = (new_seq & 0xffff) - seq;
if (seq_diff < (sizeof(s->lost_bits) * 8))
s->lost_bits |= (1 << seq_diff);
// jitter
// RFC 3550 A.8
clockrate = g->target.pt_stats[pt_idx]->clock_rate;
transit = ((uint32_t) (div64_s64(arrival_time, 1000) * clockrate) / 1000) - ts;
d = atomic_read(&s->transit);
if (d)
d = transit - d;
atomic_set(&s->transit, transit);
if (d < 0)
d = -d;
// ignore implausibly large values
if (d < 100000)
atomic_add(d - ((atomic_read(&s->jitter) + 8) >> 4), &s->jitter);
spin_unlock_irqrestore(&g->ssrc_stats_lock, flags);
}
static unsigned int rtpengine46(struct sk_buff *skb, struct sk_buff *oskb,
struct rtpengine_table *t, struct re_address *src,
struct re_address *dst, uint8_t in_tos, const struct xt_action_param *par)
{
struct udphdr *uh;
struct rtpengine_target *g;
struct sk_buff *skb2;
int err;
int error_nf_action = XT_CONTINUE;
int nf_action = NF_DROP;
int rtp_pt_idx = -2;
int ssrc_idx = -1;
unsigned int datalen, datalen_out;
struct rtp_parsed rtp, rtp2;
ssize_t offset;
uint32_t pkt_idx;
struct re_stream *stream;
struct re_stream_packet *packet;
const char *errstr = NULL;
unsigned long flags;
unsigned int i;
unsigned int start_idx, end_idx;
enum {NOT_RTCP = 0, RTCP, RTCP_FORWARD} is_rtcp;
ktime_t packet_ts;
skb_reset_transport_header(skb);
uh = udp_hdr(skb);
skb_pull(skb, sizeof(*uh));
datalen = ntohs(uh->len);
if (datalen < sizeof(*uh))
goto out_no_target;
datalen -= sizeof(*uh);
DBG("udp payload = %u\n", datalen);
skb_trim(skb, datalen);
src->port = ntohs(uh->source);
dst->port = ntohs(uh->dest);
g = get_target(t, dst);
if (!g)
goto out_no_target;
// all our outputs filled?
_r_lock(&g->outputs_lock, flags);
if (g->outputs_unfilled) {
// pass to application
_r_unlock(&g->outputs_lock, flags);
goto out;
}
_r_unlock(&g->outputs_lock, flags);
DBG("target found, local " MIPF "\n", MIPP(g->target.local));
DBG("target decrypt RTP hmac and cipher are %s and %s", g->decrypt_rtp.hmac->name,
g->decrypt_rtp.cipher->name);
if (is_stun(g, datalen, skb->data))
goto out;
// source checks;
if (g->target.src_mismatch == MSM_IGNORE)
; // source ignored
else if (!memcmp(&g->target.expected_src, src, sizeof(*src)))
; // source matched
else if (g->target.src_mismatch == MSM_PROPAGATE)
goto out; // source mismatched, pass to userspace
else {
/* MSM_DROP */
error_nf_action = NF_DROP;
errstr = "source address mismatch";
goto out_error;
}
packet_ts = ktime_divns(skb->tstamp, 1000000000LL);
if (g->target.dtls && is_dtls(skb))
goto out;
if (g->target.non_forwarding && !g->target.do_intercept) {
if (g->target.blackhole)
goto do_stats; // and drop
goto out; // pass to userspace
}
// RTP processing
rtp.ok = 0;
rtp.rtcp = 0;
is_rtcp = NOT_RTCP;
if (g->target.rtp) {
if (g->target.rtcp) {
if (g->target.rtcp_mux) {
if (is_muxed_rtcp(skb))
is_rtcp = RTCP;
}
else
is_rtcp = RTCP;
}
if (is_rtcp == NOT_RTCP) {
parse_rtp(&rtp, skb);
if (!rtp.ok && g->target.rtp_only)
goto out; // pass to userspace
}
else {
if (g->target.rtcp_fb_fw && is_rtcp_fb_packet(skb))
; // forward and then drop
else if (g->target.rtcp_fw)
is_rtcp = RTCP_FORWARD; // forward, mark, and pass to userspace
else
goto out; // just pass to userspace
parse_rtcp(&rtp, skb);
if (!rtp.rtcp)
goto out;
}
}
if (rtp.ok) {
// RTP ok
rtp_pt_idx = rtp_payload_type(rtp.rtp_header, &g->target, &g->last_pt);
// Pass to userspace if SSRC has changed.
// Look for matching SSRC index if any SSRC were given
ssrc_idx = target_find_ssrc(g, rtp.rtp_header->ssrc);
errstr = "SSRC mismatch";
if (ssrc_idx == -2)
goto out_error;
pkt_idx = rtp_packet_index(&g->decrypt_rtp, &g->target.decrypt, rtp.rtp_header, ssrc_idx,
g->target.ssrc_stats);
errstr = "SRTP authentication tag mismatch";
if (srtp_auth_validate(&g->decrypt_rtp, &g->target.decrypt, &rtp, &pkt_idx, ssrc_idx,
g->target.ssrc_stats))
goto out_error;
// if RTP, only forward packets of known/passthrough payload types
if (rtp_pt_idx < 0) {
if (g->target.pt_filter)
goto out;
}
else if (ssrc_idx >= 0) {
atomic_set(&g->target.ssrc_stats[ssrc_idx]->last_pt,
g->target.pt_stats[rtp_pt_idx]->payload_type);
atomic64_set(&g->target.ssrc_stats[ssrc_idx]->last_packet, packet_ts);
}
errstr = "SRTP decryption failed";
err = srtp_decrypt(&g->decrypt_rtp, &g->target.decrypt, &rtp, &pkt_idx);
if (err < 0)
goto out_error;
if (err == 1)
update_packet_index(&g->decrypt_rtp, &g->target.decrypt, pkt_idx, ssrc_idx,
g->target.ssrc_stats);
skb_trim(skb, rtp.header_len + rtp.payload_len);
if (g->target.rtp_stats && ssrc_idx != -1 && rtp_pt_idx >= 0)
rtp_stats(g, &rtp, ktime_to_us(skb->tstamp), rtp_pt_idx, ssrc_idx, t->rtpe_stats);
DBG("packet payload decrypted as %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x...\n",
rtp.payload[0], rtp.payload[1], rtp.payload[2], rtp.payload[3],
rtp.payload[4], rtp.payload[5], rtp.payload[6], rtp.payload[7],
rtp.payload[8], rtp.payload[9], rtp.payload[10], rtp.payload[11],
rtp.payload[12], rtp.payload[13], rtp.payload[14], rtp.payload[15],
rtp.payload[16], rtp.payload[17], rtp.payload[18], rtp.payload[19]);
}
else if (is_rtcp != NOT_RTCP && rtp.rtcp) {
pkt_idx = 0;
err = srtcp_auth_validate(&g->decrypt_rtcp, &g->target.decrypt, &rtp, &pkt_idx);
errstr = "SRTCP authentication tag mismatch";
if (err == -1)
goto out_error;
if (err == 1) {
// decrypt
errstr = "SRTCP decryption failed";
if (srtcp_decrypt(&g->decrypt_rtcp, &g->target.decrypt, &rtp, pkt_idx))
goto out_error;
}
skb_trim(skb, rtp.header_len + rtp.payload_len);
if (is_rtcp == RTCP_FORWARD) {
// mark packet as "handled" with negative timestamp
oskb->tstamp = (ktime_t) {-ktime_to_ns(oskb->tstamp)};
nf_action = XT_CONTINUE;
}
}
if (g->target.do_intercept) {
DBG("do_intercept is set\n");
stream = get_stream_lock(NULL, g->target.intercept_stream_idx);
if (stream) {
packet = kzalloc(sizeof(*packet), GFP_ATOMIC);
if (packet) {
packet->skbuf = intercept_skb_copy(skb, src);
if (packet->skbuf)
add_stream_packet(stream, packet);
else
free_packet(packet);
}
stream_put(stream);
}
}
// output
start_idx = (is_rtcp != NOT_RTCP) ? g->num_rtp_destinations : 0;
end_idx = (is_rtcp != NOT_RTCP) ? g->target.num_destinations : g->num_rtp_destinations;
if (start_idx == end_idx)
goto out; // pass to userspace
for (i = start_idx; i < end_idx; i++) {
struct rtpengine_output *o = &g->outputs[i];
DBG("output src " MIPF " -> dst " MIPF "\n", MIPP(o->output.src_addr), MIPP(o->output.dst_addr));
// do we need a copy?
if (i == (end_idx - 1)) {
skb2 = skb; // last iteration - use original
skb = NULL;
offset = 0;
}
else {
// make copy
skb2 = skb_copy_expand(skb, MAX_HEADER, MAX_SKB_TAIL_ROOM, GFP_ATOMIC);
if (!skb2) {
log_err("out of memory while creating skb copy");
atomic64_inc(&g->target.stats->errors);
atomic64_inc(&g->target.iface_stats->in.errors);
atomic64_inc(&t->rtpe_stats->errors_kernel);
continue;
}
skb_gso_reset(skb2);
offset = skb2->data - skb->data;
}
// adjust RTP pointers
rtp2 = rtp;
if (rtp.rtp_header)
rtp2.rtp_header = (void *) (((char *) rtp2.rtp_header) + offset);
rtp2.payload = (void *) (((char *) rtp2.payload) + offset);
datalen_out = skb2->len;
err = send_proxy_packet_output(skb2, g, rtp_pt_idx, o, &rtp2, ssrc_idx, par);
if (err) {
atomic64_inc(&g->target.stats->errors);
atomic64_inc(&g->target.iface_stats->in.errors);
atomic64_inc(&o->output.stats->errors);
atomic64_inc(&o->output.iface_stats->out.errors);
atomic64_inc(&t->rtpe_stats->errors_kernel);
}
else {
atomic64_inc(&o->output.stats->packets);
atomic64_add(datalen_out, &o->output.stats->bytes);
atomic64_inc(&o->output.iface_stats->out.packets);
atomic64_add(datalen_out, &o->output.iface_stats->out.bytes);
}
}
do_stats:
atomic_set(&g->target.stats->tos, in_tos);
atomic64_set(&g->target.stats->last_packet, packet_ts);
atomic64_inc(&g->target.stats->packets);
atomic64_add(datalen, &g->target.stats->bytes);
atomic64_inc(&g->target.iface_stats->in.packets);
atomic64_add(datalen, &g->target.iface_stats->in.bytes);
atomic64_inc(&t->rtpe_stats->packets_kernel);
atomic64_add(datalen, &t->rtpe_stats->bytes_kernel);
if (rtp_pt_idx >= 0) {
atomic64_inc(&g->target.pt_stats[rtp_pt_idx]->packets);
atomic64_add(datalen, &g->target.pt_stats[rtp_pt_idx]->bytes);
}
else if (rtp_pt_idx == -2)
/* not RTP */ ;
else if (rtp_pt_idx == -1) {
atomic64_inc(&g->target.stats->errors);
atomic64_inc(&g->target.iface_stats->in.errors);
}
target_put(g);
table_put(t);
if (skb)
kfree_skb(skb);
return nf_action;
out_error:
log_err("x_tables action failed: %s", errstr);
atomic64_inc(&g->target.stats->errors);
atomic64_inc(&g->target.iface_stats->in.errors);
atomic64_inc(&t->rtpe_stats->errors_kernel);
out:
target_put(g);
out_no_target:
kfree_skb(skb);
table_put(t);
return error_nf_action;
}
static unsigned int rtpengine4(struct sk_buff *oskb, const struct xt_action_param *par) {
const struct xt_rtpengine_info *pinfo = par->targinfo;
struct sk_buff *skb;
struct iphdr *ih;
struct rtpengine_table *t;
struct re_address src, dst;
t = get_table(pinfo->id);
if (!t)
goto skip;
skb = skb_copy_expand(oskb, MAX_HEADER, MAX_SKB_TAIL_ROOM, GFP_ATOMIC);
if (!skb)
goto skip3;
skb_gso_reset(skb);
skb_reset_network_header(skb);
ih = ip_hdr(skb);
skb_pull(skb, (ih->ihl << 2));
if (ih->protocol != IPPROTO_UDP)
goto skip2;
memset(&src, 0, sizeof(src));
memset(&dst, 0, sizeof(dst));
src.family = AF_INET;
src.u.ipv4 = ih->saddr;
dst.family = AF_INET;
dst.u.ipv4 = ih->daddr;
return rtpengine46(skb, oskb, t, &src, &dst, (uint8_t)ih->tos, par);
skip2:
kfree_skb(skb);
skip3:
table_put(t);
skip:
return XT_CONTINUE;
}
static unsigned int rtpengine6(struct sk_buff *oskb, const struct xt_action_param *par) {
const struct xt_rtpengine_info *pinfo = par->targinfo;
struct sk_buff *skb;
struct ipv6hdr *ih;
struct rtpengine_table *t;
struct re_address src, dst;
t = get_table(pinfo->id);
if (!t)
goto skip;
skb = skb_copy_expand(oskb, MAX_HEADER, MAX_SKB_TAIL_ROOM, GFP_ATOMIC);
if (!skb)
goto skip3;
skb_gso_reset(skb);
skb_reset_network_header(skb);
ih = ipv6_hdr(skb);
skb_pull(skb, sizeof(*ih));
if (ih->nexthdr != IPPROTO_UDP)
goto skip2;
memset(&src, 0, sizeof(src));
memset(&dst, 0, sizeof(dst));
src.family = AF_INET6;
memcpy(&src.u.ipv6, &ih->saddr, sizeof(src.u.ipv6));
dst.family = AF_INET6;
memcpy(&dst.u.ipv6, &ih->daddr, sizeof(dst.u.ipv6));
return rtpengine46(skb, oskb, t, &src, &dst, ipv6_get_dsfield(ih), par);
skip2:
kfree_skb(skb);
skip3:
table_put(t);
skip:
return XT_CONTINUE;
}
static int check(const struct xt_tgchk_param *par) {
const struct xt_rtpengine_info *pinfo = par->targinfo;
if (!my_proc_root) {
printk(KERN_WARNING "xt_RTPENGINE check() without proc_root\n");
return -EINVAL;
}
if (pinfo->id >= MAX_ID) {
printk(KERN_WARNING "xt_RTPENGINE ID too high (%u >= %u)\n", pinfo->id, MAX_ID);
return -EINVAL;
}
return 0;
}
static struct xt_target xt_rtpengine_regs[] = {
{
.name = "RTPENGINE",
.family = NFPROTO_IPV4,
.target = rtpengine4,
.targetsize = sizeof(struct xt_rtpengine_info),
.table = "filter",
.hooks = (1 << NF_INET_LOCAL_IN),
.checkentry = check,
.me = THIS_MODULE,
},
{
.name = "RTPENGINE",
.family = NFPROTO_IPV6,
.target = rtpengine6,
.targetsize = sizeof(struct xt_rtpengine_info),
.table = "filter",
.hooks = (1 << NF_INET_LOCAL_IN),
.checkentry = check,
.me = THIS_MODULE,
},
};
static int __init init(void) {
int ret;
const char *err;
err = "stream_packets_list_limit parameter must be larger than 0";
ret = -EINVAL;
if (stream_packets_list_limit <= 0)
goto fail;
printk(KERN_NOTICE "Registering xt_RTPENGINE module - version %s\n", RTPENGINE_VERSION);
DBG("using uid %u, gid %d\n", proc_uid, proc_gid);
proc_kuid = KUIDT_INIT(proc_uid);
proc_kgid = KGIDT_INIT(proc_gid);
rwlock_init(&table_lock);
auto_array_init(&calls);
auto_array_init(&streams);
ret = -ENOMEM;
err = "could not register /proc/ entries";
my_proc_root = proc_mkdir_user("rtpengine", 0555, NULL);
if (!my_proc_root)
goto fail;
/* my_proc_root->owner = THIS_MODULE; */
proc_control = proc_create_user("control", S_IFREG | 0220, my_proc_root,
&proc_main_control_ops, NULL);
if (!proc_control)
goto fail;
proc_list = proc_create_user("list", S_IFREG | 0444, my_proc_root, &proc_main_list_ops, NULL);
if (!proc_list)
goto fail;
err = "could not register xtables target";
ret = xt_register_targets(xt_rtpengine_regs, ARRAY_SIZE(xt_rtpengine_regs));
if (ret)
goto fail;
_rwlock_init(&media_player_lock);
return 0;
fail:
shut_all_threads();
clear_proc(&proc_control);
clear_proc(&proc_list);
clear_proc(&my_proc_root);
printk(KERN_ERR "Failed to load xt_RTPENGINE module: %s\n", err);
return ret;
}
static void __exit fini(void) {
printk(KERN_NOTICE "Unregistering xt_RTPENGINE module\n");
xt_unregister_targets(xt_rtpengine_regs, ARRAY_SIZE(xt_rtpengine_regs));
shut_all_threads();
clear_proc(&proc_control);
clear_proc(&proc_list);
clear_proc(&my_proc_root);
auto_array_free(&streams);
auto_array_free(&calls);
// these should be empty
kfree(play_streams);
kfree(stream_packets);
}
module_init(init);
module_exit(fini);