You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rtpengine/daemon/call.c

2975 lines
74 KiB

#include "call.h"
#include <stdio.h>
#include <unistd.h>
#include <glib.h>
#include <stdlib.h>
#include <pcre.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <xmlrpc_client.h>
#include <sys/wait.h>
#include "poller.h"
#include "aux.h"
#include "log.h"
#include "kernel.h"
#include "control_tcp.h"
#include "streambuf.h"
#include "redis.h"
#include "xt_RTPENGINE.h"
#include "bencode.h"
#include "sdp.h"
#include "str.h"
#include "stun.h"
#include "rtcp.h"
#include "rtp.h"
#include "call_interfaces.h"
#ifndef DELETE_DELAY
#define DELETE_DELAY 30
#endif
#ifndef PORT_RANDOM_MIN
#define PORT_RANDOM_MIN 6
#define PORT_RANDOM_MAX 20
#endif
#ifndef MAX_RECV_ITERS
#define MAX_RECV_ITERS 50
#endif
typedef int (*rewrite_func)(str *, struct packet_stream *);
/* also serves as array index for callstream->peers[] */
struct iterator_helper {
GSList *del_timeout;
GSList *del_scheduled;
struct stream_fd *ports[0x10000];
};
struct xmlrpc_helper {
enum xmlrpc_format fmt;
GStringChunk *c;
char *url;
GSList *tags;
};
struct streamhandler_io {
rewrite_func rtp;
rewrite_func rtcp;
int (*kernel)(struct rtpengine_srtp *, struct packet_stream *);
};
struct streamhandler {
const struct streamhandler_io *in;
const struct streamhandler_io *out;
};
const struct transport_protocol transport_protocols[] = {
[PROTO_RTP_AVP] = {
.index = PROTO_RTP_AVP,
.name = "RTP/AVP",
.srtp = 0,
.avpf = 0,
},
[PROTO_RTP_SAVP] = {
.index = PROTO_RTP_SAVP,
.name = "RTP/SAVP",
.srtp = 1,
.avpf = 0,
},
[PROTO_RTP_AVPF] = {
.index = PROTO_RTP_AVPF,
.name = "RTP/AVPF",
.srtp = 0,
.avpf = 1,
},
[PROTO_RTP_SAVPF] = {
.index = PROTO_RTP_SAVPF,
.name = "RTP/SAVPF",
.srtp = 1,
.avpf = 1,
},
[PROTO_UDP_TLS_RTP_SAVP] = {
.index = PROTO_UDP_TLS_RTP_SAVP,
.name = "UDP/TLS/RTP/SAVP",
.srtp = 1,
.avpf = 0,
},
[PROTO_UDP_TLS_RTP_SAVPF] = {
.index = PROTO_UDP_TLS_RTP_SAVPF,
.name = "UDP/TLS/RTP/SAVPF",
.srtp = 1,
.avpf = 1,
},
[PROTO_UDPTL] = {
.index = PROTO_UDPTL,
.name = "udptl",
.srtp = 0,
.avpf = 0,
},
};
const int num_transport_protocols = G_N_ELEMENTS(transport_protocols);
static void determine_handler(struct packet_stream *in, const struct packet_stream *out);
static int __k_null(struct rtpengine_srtp *s, struct packet_stream *);
static int __k_srtp_encrypt(struct rtpengine_srtp *s, struct packet_stream *);
static int __k_srtp_decrypt(struct rtpengine_srtp *s, struct packet_stream *);
static int call_avp2savp_rtp(str *s, struct packet_stream *);
static int call_savp2avp_rtp(str *s, struct packet_stream *);
static int call_avp2savp_rtcp(str *s, struct packet_stream *);
static int call_savp2avp_rtcp(str *s, struct packet_stream *);
static int call_avpf2avp_rtcp(str *s, struct packet_stream *);
//static int call_avpf2savp_rtcp(str *s, struct packet_stream *);
static int call_savpf2avp_rtcp(str *s, struct packet_stream *);
//static int call_savpf2savp_rtcp(str *s, struct packet_stream *);
/* ********** */
static const struct streamhandler_io __shio_noop = {
.kernel = __k_null,
};
static const struct streamhandler_io __shio_decrypt = {
.kernel = __k_srtp_decrypt,
.rtp = call_savp2avp_rtp,
.rtcp = call_savp2avp_rtcp,
};
static const struct streamhandler_io __shio_encrypt = {
.kernel = __k_srtp_encrypt,
.rtp = call_avp2savp_rtp,
.rtcp = call_avp2savp_rtcp,
};
static const struct streamhandler_io __shio_avpf_strip = {
.kernel = __k_null,
.rtcp = call_avpf2avp_rtcp,
};
static const struct streamhandler_io __shio_decrypt_avpf_strip = {
.kernel = __k_srtp_decrypt,
.rtp = call_savp2avp_rtp,
.rtcp = call_savpf2avp_rtcp,
};
/* ********** */
static const struct streamhandler __sh_noop = {
.in = &__shio_noop,
.out = &__shio_noop,
};
static const struct streamhandler __sh_savp2avp = {
.in = &__shio_decrypt,
.out = &__shio_noop,
};
static const struct streamhandler __sh_avp2savp = {
.in = &__shio_noop,
.out = &__shio_encrypt,
};
static const struct streamhandler __sh_avpf2avp = {
.in = &__shio_avpf_strip,
.out = &__shio_noop,
};
static const struct streamhandler __sh_avpf2savp = {
.in = &__shio_avpf_strip,
.out = &__shio_encrypt,
};
static const struct streamhandler __sh_savpf2avp = {
.in = &__shio_decrypt_avpf_strip,
.out = &__shio_noop,
};
static const struct streamhandler __sh_savp2savp = {
.in = &__shio_decrypt,
.out = &__shio_encrypt,
};
static const struct streamhandler __sh_savpf2savp = {
.in = &__shio_decrypt_avpf_strip,
.out = &__shio_encrypt,
};
/* ********** */
static const struct streamhandler *__sh_matrix_in_rtp_avp[] = {
[PROTO_RTP_AVP] = &__sh_noop,
[PROTO_RTP_AVPF] = &__sh_noop,
[PROTO_RTP_SAVP] = &__sh_avp2savp,
[PROTO_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_avp2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDPTL] = &__sh_noop,
};
static const struct streamhandler *__sh_matrix_in_rtp_avpf[] = {
[PROTO_RTP_AVP] = &__sh_avpf2avp,
[PROTO_RTP_AVPF] = &__sh_noop,
[PROTO_RTP_SAVP] = &__sh_avpf2savp,
[PROTO_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_avpf2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_avp2savp,
[PROTO_UDPTL] = &__sh_noop,
};
static const struct streamhandler *__sh_matrix_in_rtp_savp[] = {
[PROTO_RTP_AVP] = &__sh_savp2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_noop,
[PROTO_RTP_SAVPF] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_noop,
[PROTO_UDPTL] = &__sh_noop,
};
static const struct streamhandler *__sh_matrix_in_rtp_savpf[] = {
[PROTO_RTP_AVP] = &__sh_savpf2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_RTP_SAVPF] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_noop,
[PROTO_UDPTL] = &__sh_noop,
};
static const struct streamhandler *__sh_matrix_in_rtp_savp_dtls[] = {
[PROTO_RTP_AVP] = &__sh_savp2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savp2savp,
[PROTO_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savp2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDPTL] = &__sh_noop,
};
static const struct streamhandler *__sh_matrix_in_rtp_savpf_dtls[] = {
[PROTO_RTP_AVP] = &__sh_savpf2avp,
[PROTO_RTP_AVPF] = &__sh_savp2avp,
[PROTO_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_savpf2savp,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_savp2savp,
[PROTO_UDPTL] = &__sh_noop,
};
static const struct streamhandler *__sh_matrix_noop[] = {
[PROTO_RTP_AVP] = &__sh_noop,
[PROTO_RTP_AVPF] = &__sh_noop,
[PROTO_RTP_SAVP] = &__sh_noop,
[PROTO_RTP_SAVPF] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVP] = &__sh_noop,
[PROTO_UDP_TLS_RTP_SAVPF] = &__sh_noop,
[PROTO_UDPTL] = &__sh_noop,
};
/* ********** */
static const struct streamhandler **__sh_matrix[] = {
[PROTO_RTP_AVP] = __sh_matrix_in_rtp_avp,
[PROTO_RTP_AVPF] = __sh_matrix_in_rtp_avpf,
[PROTO_RTP_SAVP] = __sh_matrix_in_rtp_savp,
[PROTO_RTP_SAVPF] = __sh_matrix_in_rtp_savpf,
[PROTO_UDP_TLS_RTP_SAVP] = __sh_matrix_in_rtp_savp,
[PROTO_UDP_TLS_RTP_SAVPF] = __sh_matrix_in_rtp_savpf,
[PROTO_UDPTL] = __sh_matrix_noop,
};
/* special case for DTLS as we can't pass through SRTP<>SRTP */
static const struct streamhandler **__sh_matrix_dtls[] = {
[PROTO_RTP_AVP] = __sh_matrix_in_rtp_avp,
[PROTO_RTP_AVPF] = __sh_matrix_in_rtp_avpf,
[PROTO_RTP_SAVP] = __sh_matrix_in_rtp_savp_dtls,
[PROTO_RTP_SAVPF] = __sh_matrix_in_rtp_savpf_dtls,
[PROTO_UDP_TLS_RTP_SAVP] = __sh_matrix_in_rtp_savp_dtls,
[PROTO_UDP_TLS_RTP_SAVPF] = __sh_matrix_in_rtp_savpf_dtls,
[PROTO_UDPTL] = __sh_matrix_noop,
};
/* ********** */
static const struct rtpengine_srtp __res_null = {
.cipher = REC_NULL,
.hmac = REH_NULL,
};
static void unkernelize(struct packet_stream *);
static void __stream_unkernelize(struct packet_stream *ps);
static void stream_unkernelize(struct packet_stream *ps);
static void __monologue_destroy(struct call_monologue *monologue);
static struct interface_address *get_interface_address(struct local_interface *lif, int family);
static const GQueue *get_interface_addresses(struct local_interface *lif, int family);
/* called lock-free */
static void stream_fd_closed(int fd, void *p, uintptr_t u) {
struct stream_fd *sfd = p;
struct call *c;
int i;
socklen_t j;
assert(sfd->fd.fd == fd);
c = sfd->call;
if (!c)
return;
j = sizeof(i);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &i, &j);
ilog(LOG_WARNING, "Read error on media socket: %i (%s) -- closing call", i, strerror(i));
call_destroy(c);
}
INLINE void __re_address_translate(struct re_address *o, const struct endpoint *ep) {
o->family = family_from_address(&ep->ip46);
if (o->family == AF_INET)
o->u.ipv4 = in6_to_4(&ep->ip46);
else
memcpy(o->u.ipv6, &ep->ip46, sizeof(o->u.ipv6));
o->port = ep->port;
}
/* called with in_lock held */
void kernelize(struct packet_stream *stream) {
struct rtpengine_target_info reti;
struct call *call = stream->call;
struct callmaster *cm = call->callmaster;
struct packet_stream *sink = NULL;
struct interface_address *ifa;
if (PS_ISSET(stream, KERNELIZED))
return;
if (cm->conf.kernelid < 0)
goto no_kernel;
if (cm->conf.kernelfd < 0)
goto no_kernel_warn;
if (!PS_ISSET(stream, RTP))
goto no_kernel;
if (!stream->sfd)
goto no_kernel;
ilog(LOG_INFO, "Kernelizing media stream");
sink = packet_stream_sink(stream);
if (!sink) {
ilog(LOG_WARNING, "Attempt to kernelize stream without sink");
goto no_kernel;
}
determine_handler(stream, sink);
if (is_addr_unspecified(&sink->advertised_endpoint.ip46)
|| !sink->advertised_endpoint.port)
goto no_kernel;
if (!stream->handler->in->kernel
|| !stream->handler->out->kernel)
goto no_kernel_warn;
ZERO(reti);
if (PS_ISSET(stream, STRICT_SOURCE) || PS_ISSET(stream, MEDIA_HANDOVER)) {
mutex_lock(&stream->out_lock);
__re_address_translate(&reti.expected_src, &stream->endpoint);
mutex_unlock(&stream->out_lock);
if (PS_ISSET(stream, STRICT_SOURCE))
reti.src_mismatch = MSM_DROP;
else if (PS_ISSET(stream, MEDIA_HANDOVER))
reti.src_mismatch = MSM_PROPAGATE;
}
mutex_lock(&sink->out_lock);
reti.target_port = stream->sfd->fd.localport;
reti.tos = call->tos;
reti.rtcp_mux = MEDIA_ISSET(stream->media, RTCP_MUX);
reti.dtls = MEDIA_ISSET(stream->media, DTLS);
reti.stun = PS_ISSET(stream, STUN);
__re_address_translate(&reti.dst_addr, &sink->endpoint);
reti.src_addr.family = reti.dst_addr.family;
reti.src_addr.port = sink->sfd->fd.localport;
ifa = g_atomic_pointer_get(&sink->media->local_address);
if (reti.src_addr.family == AF_INET)
reti.src_addr.u.ipv4 = in6_to_4(&ifa->addr);
else
memcpy(reti.src_addr.u.ipv6, &ifa->addr, sizeof(reti.src_addr.u.ipv6));
stream->handler->in->kernel(&reti.decrypt, stream);
stream->handler->out->kernel(&reti.encrypt, sink);
mutex_unlock(&sink->out_lock);
if (!reti.encrypt.cipher || !reti.encrypt.hmac)
goto no_kernel_warn;
if (!reti.decrypt.cipher || !reti.decrypt.hmac)
goto no_kernel_warn;
ZERO(stream->kernel_stats);
kernel_add_stream(cm->conf.kernelfd, &reti, 0);
PS_SET(stream, KERNELIZED);
return;
no_kernel_warn:
ilog(LOG_WARNING, "No support for kernel packet forwarding available");
no_kernel:
PS_SET(stream, KERNELIZED);
PS_SET(stream, NO_KERNEL_SUPPORT);
}
/* returns: 0 = not a muxed stream, 1 = muxed, RTP, 2 = muxed, RTCP */
static int rtcp_demux(str *s, struct call_media *media) {
if (!MEDIA_ISSET(media, RTCP_MUX))
return 0;
return rtcp_demux_is_rtcp(s) ? 2 : 1;
}
static int call_avpf2avp_rtcp(str *s, struct packet_stream *stream) {
return rtcp_avpf2avp(s);
}
static int call_avp2savp_rtp(str *s, struct packet_stream *stream) {
return rtp_avp2savp(s, &stream->crypto);
}
static int call_avp2savp_rtcp(str *s, struct packet_stream *stream) {
return rtcp_avp2savp(s, &stream->crypto);
}
static int call_savp2avp_rtp(str *s, struct packet_stream *stream) {
return rtp_savp2avp(s, &stream->sfd->crypto);
}
static int call_savp2avp_rtcp(str *s, struct packet_stream *stream) {
return rtcp_savp2avp(s, &stream->sfd->crypto);
}
static int call_savpf2avp_rtcp(str *s, struct packet_stream *stream) {
int ret;
ret = rtcp_savp2avp(s, &stream->sfd->crypto);
if (ret < 0)
return ret;
return rtcp_avpf2avp(s);
}
static int __k_null(struct rtpengine_srtp *s, struct packet_stream *stream) {
*s = __res_null;
return 0;
}
static int __k_srtp_crypt(struct rtpengine_srtp *s, struct crypto_context *c) {
if (!c->params.crypto_suite)
return -1;
*s = (struct rtpengine_srtp) {
.cipher = c->params.crypto_suite->kernel_cipher,
.hmac = c->params.crypto_suite->kernel_hmac,
.mki_len = c->params.mki_len,
.last_index = c->last_index,
.auth_tag_len = c->params.crypto_suite->srtp_auth_tag,
};
if (c->params.mki_len)
memcpy(s->mki, c->params.mki, c->params.mki_len);
memcpy(s->master_key, c->params.master_key, c->params.crypto_suite->master_key_len);
memcpy(s->master_salt, c->params.master_salt, c->params.crypto_suite->master_salt_len);
return 0;
}
static int __k_srtp_encrypt(struct rtpengine_srtp *s, struct packet_stream *stream) {
return __k_srtp_crypt(s, &stream->crypto);
}
static int __k_srtp_decrypt(struct rtpengine_srtp *s, struct packet_stream *stream) {
return __k_srtp_crypt(s, &stream->sfd->crypto);
}
/* must be called with call->master_lock held in R, and in->in_lock held */
static void determine_handler(struct packet_stream *in, const struct packet_stream *out) {
const struct streamhandler **sh_pp, *sh;
const struct streamhandler ***matrix;
if (PS_ISSET(in, HAS_HANDLER))
return;
if (MEDIA_ISSET(in->media, PASSTHRU))
goto noop;
if (!in->media->protocol)
goto err;
if (!out->media->protocol)
goto err;
matrix = __sh_matrix;
if (MEDIA_ISSET(in->media, DTLS) || MEDIA_ISSET(out->media, DTLS))
matrix = __sh_matrix_dtls;
sh_pp = matrix[in->media->protocol->index];
if (!sh_pp)
goto err;
sh = sh_pp[out->media->protocol->index];
if (!sh)
goto err;
in->handler = sh;
done:
PS_SET(in, HAS_HANDLER);
return;
err:
ilog(LOG_WARNING, "Unknown transport protocol encountered");
noop:
in->handler = &__sh_noop;
goto done;
}
void stream_msg_mh_src(struct packet_stream *ps, struct msghdr *mh) {
struct cmsghdr *ch;
struct in_pktinfo *pi;
struct in6_pktinfo *pi6;
struct sockaddr_in6 *sin6;
struct interface_address *ifa;
sin6 = mh->msg_name;
ifa = g_atomic_pointer_get(&ps->media->local_address);
ch = CMSG_FIRSTHDR(mh);
ZERO(*ch);
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
ch->cmsg_len = CMSG_LEN(sizeof(*pi));
ch->cmsg_level = IPPROTO_IP;
ch->cmsg_type = IP_PKTINFO;
pi = (void *) CMSG_DATA(ch);
ZERO(*pi);
pi->ipi_spec_dst.s_addr = in6_to_4(&ifa->addr);
mh->msg_controllen = CMSG_SPACE(sizeof(*pi));
}
else {
ch->cmsg_len = CMSG_LEN(sizeof(*pi6));
ch->cmsg_level = IPPROTO_IPV6;
ch->cmsg_type = IPV6_PKTINFO;
pi6 = (void *) CMSG_DATA(ch);
ZERO(*pi6);
pi6->ipi6_addr = ifa->addr;
mh->msg_controllen = CMSG_SPACE(sizeof(*pi6));
}
}
/* called lock-free */
static int stream_packet(struct stream_fd *sfd, str *s, struct sockaddr_in6 *fsin, struct in6_addr *dst) {
struct packet_stream *stream,
*sink = NULL,
*in_srtp, *out_srtp;
struct call_media *media;
int ret = 0, update = 0, stun_ret = 0, handler_ret = 0, muxed_rtcp = 0, rtcp = 0,
unk = 0;
int i;
struct sockaddr_in6 sin6;
struct msghdr mh;
struct iovec iov;
unsigned char buf[256];
struct call *call;
struct callmaster *cm;
/*unsigned char cc;*/
char addr[64];
struct endpoint endpoint;
rewrite_func rwf_in, rwf_out;
struct interface_address *loc_addr;
call = sfd->call;
cm = call->callmaster;
smart_ntop_port(addr, fsin, sizeof(addr));
rwlock_lock_r(&call->master_lock);
stream = sfd->stream;
if (!stream)
goto unlock_out;
mutex_lock(&stream->in_lock);
media = stream->media;
if (!stream->sfd)
goto done;
if (MEDIA_ISSET(media, DTLS) && is_dtls(s)) {
ret = dtls(stream, s, fsin);
if (!ret)
goto done;
}
if (PS_ISSET(stream, STUN) && is_stun(s)) {
stun_ret = stun(s, stream, fsin);
if (!stun_ret)
goto done;
if (stun_ret == 1) {
ilog(LOG_INFO, "STUN: using this candidate");
goto use_cand;
}
else /* not an stun packet */
stun_ret = 0;
}
#if RTP_LOOP_PROTECT
for (i = 0; i < RTP_LOOP_PACKETS; i++) {
if (stream->lp_buf[i].len != s->len)
continue;
if (memcmp(stream->lp_buf[i].buf, s->s, MIN(s->len, RTP_LOOP_PROTECT)))
continue;
__C_DBG("packet dupe");
if (stream->lp_count >= RTP_LOOP_MAX_COUNT) {
ilog(LOG_WARNING, "More than %d duplicate packets detected, dropping packet "
"to avoid potential loop", RTP_LOOP_MAX_COUNT);
goto done;
}
stream->lp_count++;
goto loop_ok;
}
/* not a dupe */
stream->lp_count = 0;
stream->lp_buf[stream->lp_idx].len = s->len;
memcpy(stream->lp_buf[stream->lp_idx].buf, s->s, MIN(s->len, RTP_LOOP_PROTECT));
stream->lp_idx = (stream->lp_idx + 1) % RTP_LOOP_PACKETS;
loop_ok:
#endif
mutex_unlock(&stream->in_lock);
in_srtp = stream;
sink = stream->rtp_sink;
if (!sink && PS_ISSET(stream, RTCP)) {
sink = stream->rtcp_sink;
rtcp = 1;
}
else if (stream->rtcp_sink) {
muxed_rtcp = rtcp_demux(s, media);
if (muxed_rtcp == 2) {
sink = stream->rtcp_sink;
rtcp = 1;
in_srtp = stream->rtcp_sibling;
}
}
out_srtp = sink;
if (rtcp && sink && sink->rtcp_sibling)
out_srtp = sink->rtcp_sibling;
if (!sink || !sink->sfd || !out_srtp->sfd || !in_srtp->sfd) {
ilog(LOG_WARNING, "RTP packet from %s discarded", addr);
mutex_lock(&stream->in_lock);
stream->stats.errors++;
mutex_lock(&cm->statspslock);
cm->statsps.errors++;
mutex_unlock(&cm->statspslock);
goto done;
}
mutex_lock(&in_srtp->in_lock);
determine_handler(in_srtp, sink);
if (!rtcp) {
rwf_in = in_srtp->handler->in->rtp;
rwf_out = in_srtp->handler->out->rtp;
}
else {
rwf_in = in_srtp->handler->in->rtcp;
rwf_out = in_srtp->handler->out->rtcp;
}
mutex_lock(&out_srtp->out_lock);
/* return values are: 0 = forward packet, -1 = error/dont forward,
* 1 = forward and push update to redis */
if (rwf_in)
handler_ret = rwf_in(s, in_srtp);
if (handler_ret >= 0 && rwf_out)
handler_ret += rwf_out(s, out_srtp);
if (handler_ret > 0)
update = 1;
mutex_unlock(&out_srtp->out_lock);
mutex_unlock(&in_srtp->in_lock);
mutex_lock(&stream->in_lock);
use_cand:
/* we're OK to (potentially) use the source address of this packet as destination
* in the other direction. */
/* if the other side hasn't been signalled yet, just forward the packet */
if (!PS_ISSET(stream, FILLED))
goto forward;
/* do not pay attention to source addresses of incoming packets for asymmetric streams */
if (MEDIA_ISSET(media, ASYMMETRIC))
PS_SET(stream, CONFIRMED);
/* if we have already updated the endpoint in the past ... */
if (PS_ISSET(stream, CONFIRMED)) {
/* see if we need to compare the source address with the known endpoint */
if (PS_ISSET(stream, STRICT_SOURCE) || PS_ISSET(stream, MEDIA_HANDOVER)) {
endpoint.ip46 = fsin->sin6_addr;
endpoint.port = ntohs(fsin->sin6_port);
mutex_lock(&stream->out_lock);
int tmp = memcmp(&endpoint, &stream->endpoint, sizeof(endpoint));
if (tmp && PS_ISSET(stream, MEDIA_HANDOVER)) {
/* out_lock remains locked */
ilog(LOG_INFO, "Peer address changed to %s", addr);
unk = 1;
goto update_addr;
}
mutex_unlock(&stream->out_lock);
if (tmp && PS_ISSET(stream, STRICT_SOURCE)) {
stream->stats.errors++;
goto drop;
}
}
goto kernel_check;
}
/* wait at least 3 seconds after last signal before committing to a particular
* endpoint address */
if (!call->last_signal || poller_now <= call->last_signal + 3)
goto update_peerinfo;
ilog(LOG_INFO, "Confirmed peer address as %s", addr);
PS_SET(stream, CONFIRMED);
update = 1;
update_peerinfo:
mutex_lock(&stream->out_lock);
update_addr:
endpoint = stream->endpoint;
stream->endpoint.ip46 = fsin->sin6_addr;
stream->endpoint.port = ntohs(fsin->sin6_port);
if (memcmp(&endpoint, &stream->endpoint, sizeof(endpoint)))
update = 1;
mutex_unlock(&stream->out_lock);
/* check the destination address of the received packet against what we think our
* local interface to use is */
loc_addr = g_atomic_pointer_get(&media->local_address);
if (dst && memcmp(dst, &loc_addr->addr, sizeof(*dst))) {
struct interface_address *ifa;
char ifa_buf[64];
smart_ntop(ifa_buf, dst, sizeof(ifa_buf));
ifa = get_interface_from_address(media->interface, dst);
if (!ifa) {
ilog(LOG_ERROR, "No matching local interface for destination address %s found", ifa_buf);
goto drop;
}
if (g_atomic_pointer_compare_and_exchange(&media->local_address, loc_addr, ifa)) {
ilog(LOG_INFO, "Switching local interface to %s", ifa_buf);
update = 1;
}
}
kernel_check:
if (PS_ISSET(stream, NO_KERNEL_SUPPORT))
goto forward;
if (PS_ISSET(stream, CONFIRMED) && sink && PS_ISSET(sink, CONFIRMED) && PS_ISSET(sink, FILLED))
kernelize(stream);
forward:
if (sink)
mutex_lock(&sink->out_lock);
if (!sink || is_addr_unspecified(&sink->advertised_endpoint.ip46)
|| !sink->advertised_endpoint.port
|| stun_ret || handler_ret < 0)
goto drop;
ZERO(mh);
mh.msg_control = buf;
mh.msg_controllen = sizeof(buf);
ZERO(sin6);
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = sink->endpoint.ip46;
sin6.sin6_port = htons(sink->endpoint.port);
mh.msg_name = &sin6;
mh.msg_namelen = sizeof(sin6);
mutex_unlock(&sink->out_lock);
stream_msg_mh_src(sink, &mh);
ZERO(iov);
iov.iov_base = s->s;
iov.iov_len = s->len;
mh.msg_iov = &iov;
mh.msg_iovlen = 1;
ret = sendmsg(sink->sfd->fd.fd, &mh, 0);
if (ret == -1) {
stream->stats.errors++;
mutex_lock(&cm->statspslock);
cm->statsps.errors++;
mutex_unlock(&cm->statspslock);
goto out;
}
sink = NULL;
drop:
if (sink)
mutex_unlock(&sink->out_lock);
ret = 0;
stream->stats.packets++;
stream->stats.bytes += s->len;
stream->last_packet = poller_now;
mutex_lock(&cm->statspslock);
cm->statsps.packets++;
cm->statsps.bytes += s->len;
mutex_unlock(&cm->statspslock);
out:
if (ret == 0 && update)
ret = 1;
done:
if (unk)
__stream_unkernelize(stream);
mutex_unlock(&stream->in_lock);
if (unk) {
stream_unkernelize(stream->rtp_sink);
stream_unkernelize(stream->rtcp_sink);
}
unlock_out:
rwlock_unlock_r(&call->master_lock);
return ret;
}
static void stream_fd_readable(int fd, void *p, uintptr_t u) {
struct stream_fd *sfd = p;
char buf[RTP_BUFFER_SIZE];
int ret, iters;
struct sockaddr_in6 sin6_src;
int update = 0;
struct call *ca;
str s;
struct msghdr mh;
struct iovec iov;
char control[128];
struct cmsghdr *cmh;
struct in6_pktinfo *pi6;
struct in6_addr *dst;
if (sfd->fd.fd != fd)
goto out;
log_info_stream_fd(sfd);
for (iters = 0; ; iters++) {
#if MAX_RECV_ITERS
if (iters >= MAX_RECV_ITERS) {
ilog(LOG_ERROR, "Too many packets in UDP receive queue (more than %d), "
"aborting loop. Dropped packets possible", iters);
break;
}
#endif
ZERO(mh);
mh.msg_name = &sin6_src;
mh.msg_namelen = sizeof(sin6_src);
mh.msg_iov = &iov;
mh.msg_iovlen = 1;
mh.msg_control = control;
mh.msg_controllen = sizeof(control);
iov.iov_base = buf + RTP_BUFFER_HEAD_ROOM;
iov.iov_len = MAX_RTP_PACKET_SIZE;
ret = recvmsg(fd, &mh, 0);
if (ret < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN || errno == EWOULDBLOCK)
break;
stream_fd_closed(fd, sfd, 0);
goto done;
}
if (ret >= MAX_RTP_PACKET_SIZE)
ilog(LOG_WARNING, "UDP packet possibly truncated");
dst = NULL;
for (cmh = CMSG_FIRSTHDR(&mh); cmh; cmh = CMSG_NXTHDR(&mh, cmh)) {
if (cmh->cmsg_level == IPPROTO_IPV6 && cmh->cmsg_type == IPV6_PKTINFO) {
pi6 = (void *) CMSG_DATA(cmh);
dst = &pi6->ipi6_addr;
}
}
str_init_len(&s, buf + RTP_BUFFER_HEAD_ROOM, ret);
ret = stream_packet(sfd, &s, &sin6_src, dst);
if (ret == -1) {
ilog(LOG_WARNING, "Write error on RTP socket");
call_destroy(sfd->call);
return;
}
if (ret == 1)
update = 1;
}
out:
ca = sfd->call ? : NULL;
if (ca && update)
redis_update(ca, sfd->call->callmaster->conf.redis);
done:
log_info_clear();
}
/* called with call->master_lock held in R */
static int call_timer_delete_monologues(struct call *c) {
GSList *i;
struct call_monologue *ml;
int ret = 0;
time_t min_deleted = 0;
/* we need a write lock here */
rwlock_unlock_r(&c->master_lock);
rwlock_lock_w(&c->master_lock);
for (i = c->monologues; i; i = i->next) {
ml = i->data;
if (!ml->deleted)
continue;
if (ml->deleted > poller_now) {
if (!min_deleted || ml->deleted < min_deleted)
min_deleted = ml->deleted;
continue;
}
__monologue_destroy(ml);
ml->deleted = 0;
if (!g_hash_table_size(c->tags)) {
ilog(LOG_INFO, "Call branch '"STR_FORMAT"' deleted, no more branches remaining",
STR_FMT(&ml->tag));
ret = 1; /* destroy call */
goto out;
}
ilog(LOG_INFO, "Call branch "STR_FORMAT" deleted",
STR_FMT(&ml->tag));
}
out:
c->ml_deleted = min_deleted;
rwlock_unlock_w(&c->master_lock);
rwlock_lock_r(&c->master_lock);
return ret;
}
/* called with callmaster->hashlock held */
static void call_timer_iterator(void *key, void *val, void *ptr) {
struct call *c = val;
struct iterator_helper *hlp = ptr;
GSList *it;
struct callmaster *cm;
unsigned int check;
int good = 0;
struct packet_stream *ps;
struct stream_fd *sfd;
rwlock_lock_r(&c->master_lock);
log_info_call(c);
if (c->deleted && poller_now >= c->deleted
&& c->last_signal <= c->deleted)
goto delete;
if (c->ml_deleted && poller_now >= c->ml_deleted) {
if (call_timer_delete_monologues(c))
goto delete;
}
if (!c->streams)
goto drop;
cm = c->callmaster;
for (it = c->streams; it; it = it->next) {
ps = it->data;
mutex_lock(&ps->in_lock);
if (!ps->media)
goto next;
sfd = ps->sfd;
if (!sfd)
goto no_sfd;
if (MEDIA_ISSET(ps->media, DTLS) && sfd->dtls.init && !sfd->dtls.connected)
dtls(ps, NULL, NULL);
if (hlp->ports[sfd->fd.localport])
goto next;
hlp->ports[sfd->fd.localport] = sfd;
obj_hold(sfd);
no_sfd:
if (good)
goto next;
check = cm->conf.timeout;
if (!MEDIA_ISSET(ps->media, RECV) || !sfd)
check = cm->conf.silent_timeout;
if (poller_now - ps->last_packet < check)
good = 1;
next:
mutex_unlock(&ps->in_lock);
}
if (good)
goto out;
ilog(LOG_INFO, "Closing call due to timeout");
drop:
hlp->del_timeout = g_slist_prepend(hlp->del_timeout, obj_get(c));
goto out;
delete:
hlp->del_scheduled = g_slist_prepend(hlp->del_scheduled, obj_get(c));
goto out;
out:
rwlock_unlock_r(&c->master_lock);
log_info_clear();
}
void xmlrpc_kill_calls(void *p) {
struct xmlrpc_helper *xh = p;
xmlrpc_env e;
xmlrpc_client *c;
xmlrpc_value *r;
pid_t pid;
sigset_t ss;
int i = 0;
int status;
str *tag;
while (xh->tags) {
tag = xh->tags->data;
ilog(LOG_INFO, "Forking child to close call with tag "STR_FORMAT" via XMLRPC", STR_FMT(tag));
pid = fork();
if (pid) {
retry:
pid = waitpid(pid, &status, 0);
if ((pid > 0 && WIFEXITED(status) && WEXITSTATUS(status) == 0) || i >= 3) {
xh->tags = g_slist_delete_link(xh->tags, xh->tags);
i = 0;
}
else {
if (pid == -1 && errno == EINTR)
goto retry;
ilog(LOG_INFO, "XMLRPC child exited with status %i", status);
i++;
}
continue;
}
/* child process */
alarm(1); /* syslog functions contain a lock, which may be locked at
this point and can't be unlocked */
rlim(RLIMIT_CORE, 0);
sigemptyset(&ss);
sigprocmask(SIG_SETMASK, &ss, NULL);
closelog();
for (i = 0; i < 100; i++)
close(i);
if (!_log_stderr) {
openlog("rtpengine/child", LOG_PID | LOG_NDELAY, LOG_DAEMON);
}
ilog(LOG_INFO, "Initiating XMLRPC call for tag "STR_FORMAT"", STR_FMT(tag));
alarm(5);
xmlrpc_env_init(&e);
xmlrpc_client_setup_global_const(&e);
xmlrpc_client_create(&e, XMLRPC_CLIENT_NO_FLAGS, "ngcp-rtpengine", RTPENGINE_VERSION,
NULL, 0, &c);
if (e.fault_occurred)
goto fault;
r = NULL;
switch (xh->fmt) {
case XF_SEMS:
xmlrpc_client_call2f(&e, c, xh->url, "di", &r, "(ssss)",
"sbc", "postControlCmd", tag->s, "teardown");
break;
case XF_CALLID:
xmlrpc_client_call2f(&e, c, xh->url, "teardown", &r, "(s)", tag->s);
break;
}
if (r)
xmlrpc_DECREF(r);
if (e.fault_occurred)
goto fault;
xmlrpc_client_destroy(c);
xh->tags = g_slist_delete_link(xh->tags, xh->tags);
xmlrpc_env_clean(&e);
_exit(0);
fault:
ilog(LOG_WARNING, "XMLRPC fault occurred: %s", e.fault_string);
_exit(1);
}
g_string_chunk_free(xh->c);
g_slice_free1(sizeof(*xh), xh);
}
void kill_calls_timer(GSList *list, struct callmaster *m) {
struct call *ca;
GSList *csl;
struct call_monologue *cm;
const char *url;
struct xmlrpc_helper *xh = NULL;
if (!list)
return;
/* if m is NULL, it's the scheduled deletions, otherwise it's the timeouts */
url = m ? m->conf.b2b_url : NULL;
if (url) {
xh = g_slice_alloc(sizeof(*xh));
xh->c = g_string_chunk_new(64);
xh->url = g_string_chunk_insert(xh->c, url);
xh->tags = NULL;
xh->fmt = m->conf.fmt;
}
while (list) {
ca = list->data;
log_info_call(ca);
if (!url)
goto destroy;
rwlock_lock_r(&ca->master_lock);
switch (m->conf.fmt) {
case XF_SEMS:
for (csl = ca->monologues; csl; csl = csl->next) {
cm = csl->data;
if (cm->tag.s && cm->tag.len) {
xh->tags = g_slist_prepend(xh->tags, str_chunk_insert(xh->c, &cm->tag));
}
}
break;
case XF_CALLID:
xh->tags = g_slist_prepend(xh->tags, str_chunk_insert(xh->c, &ca->callid));
break;
}
rwlock_unlock_r(&ca->master_lock);
destroy:
call_destroy(ca);
obj_put(ca);
list = g_slist_delete_link(list, list);
log_info_clear();
}
if (xh)
thread_create_detach(xmlrpc_kill_calls, xh);
}
#define DS(x) do { \
mutex_lock(&ps->in_lock); \
if (ke->stats.x < ps->kernel_stats.x) \
d = 0; \
else \
d = ke->stats.x - ps->kernel_stats.x; \
ps->stats.x += d; \
mutex_unlock(&ps->in_lock); \
mutex_lock(&m->statspslock); \
m->statsps.x += d; \
mutex_unlock(&m->statspslock); \
} while (0)
static void callmaster_timer(void *ptr) {
struct callmaster *m = ptr;
struct iterator_helper hlp;
GList *i;
struct rtpengine_list_entry *ke;
struct packet_stream *ps, *sink;
u_int64_t d;
struct stats tmpstats;
int j, update;
struct stream_fd *sfd;
ZERO(hlp);
rwlock_lock_r(&m->hashlock);
g_hash_table_foreach(m->callhash, call_timer_iterator, &hlp);
rwlock_unlock_r(&m->hashlock);
mutex_lock(&m->statspslock);
memcpy(&tmpstats, &m->statsps, sizeof(tmpstats));
ZERO(m->statsps);
mutex_unlock(&m->statspslock);
mutex_lock(&m->statslock);
memcpy(&m->stats, &tmpstats, sizeof(m->stats));
mutex_unlock(&m->statslock);
i = (m->conf.kernelid >= 0) ? kernel_list(m->conf.kernelid) : NULL;
while (i) {
ke = i->data;
sfd = hlp.ports[ke->target.target_port];
if (!sfd)
goto next;
rwlock_lock_r(&sfd->call->master_lock);
ps = sfd->stream;
if (!ps || ps->sfd != sfd) {
rwlock_unlock_r(&sfd->call->master_lock);
goto next;
}
DS(packets);
DS(bytes);
DS(errors);
mutex_lock(&ps->in_lock);
if (ke->stats.packets != ps->kernel_stats.packets)
ps->last_packet = poller_now;
ps->kernel_stats.packets = ke->stats.packets;
ps->kernel_stats.bytes = ke->stats.bytes;
ps->kernel_stats.errors = ke->stats.errors;
update = 0;
sink = packet_stream_sink(ps);
if (sink)
mutex_lock(&sink->out_lock);
/* XXX this only works if the kernel module actually gets to see the packets. */
if (sink && sink->crypto.params.crypto_suite
&& ke->target.encrypt.last_index - sink->crypto.last_index > 0x4000) {
sink->crypto.last_index = ke->target.encrypt.last_index;
update = 1;
}
if (sfd->crypto.params.crypto_suite
&& ke->target.decrypt.last_index - sfd->crypto.last_index > 0x4000) {
sfd->crypto.last_index = ke->target.decrypt.last_index;
update = 1;
}
if (sink)
mutex_unlock(&sink->out_lock);
mutex_unlock(&ps->in_lock);
rwlock_unlock_r(&sfd->call->master_lock);
if (update)
redis_update(ps->call, m->conf.redis);
next:
hlp.ports[ke->target.target_port] = NULL;
g_slice_free1(sizeof(*ke), ke);
i = g_list_delete_link(i, i);
if (sfd)
obj_put(sfd);
}
for (j = 0; j < (sizeof(hlp.ports) / sizeof(*hlp.ports)); j++)
if (hlp.ports[j])
obj_put(hlp.ports[j]);
kill_calls_timer(hlp.del_scheduled, NULL);
kill_calls_timer(hlp.del_timeout, m);
}
#undef DS
struct callmaster *callmaster_new(struct poller *p) {
struct callmaster *c;
const char *errptr;
int erroff;
c = obj_alloc0("callmaster", sizeof(*c), NULL);
c->callhash = g_hash_table_new(str_hash, str_equal);
if (!c->callhash)
goto fail;
c->poller = p;
rwlock_init(&c->hashlock);
c->info_re = pcre_compile("^([^:,]+)(?::(.*?))?(?:$|,)", PCRE_DOLLAR_ENDONLY | PCRE_DOTALL, &errptr, &erroff, NULL);
if (!c->info_re)
goto fail;
c->info_ree = pcre_study(c->info_re, 0, &errptr);
c->streams_re = pcre_compile("^([\\d.]+):(\\d+)(?::(.*?))?(?:$|,)", PCRE_DOLLAR_ENDONLY | PCRE_DOTALL, &errptr, &erroff, NULL);
if (!c->streams_re)
goto fail;
c->streams_ree = pcre_study(c->streams_re, 0, &errptr);
poller_add_timer(p, callmaster_timer, &c->obj);
return c;
fail:
obj_put(c);
return NULL;
}
static void __set_tos(int fd, const struct call *c) {
int tos;
setsockopt(fd, IPPROTO_IP, IP_TOS, &c->tos, sizeof(c->tos));
#ifdef IPV6_TCLASS
tos = c->tos;
setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
#else
#warning "Will not set IPv6 traffic class"
#endif
}
static void __get_pktinfo(int fd) {
int x;
x = 1;
setsockopt(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &x, sizeof(x));
}
static int get_port6(struct udp_fd *r, u_int16_t p, const struct call *c) {
int fd;
struct sockaddr_in6 sin;
fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (fd < 0)
return -1;
nonblock(fd);
reuseaddr(fd);
ipv6only(fd, 0);
__set_tos(fd, c);
__get_pktinfo(fd);
ZERO(sin);
sin.sin6_family = AF_INET6;
sin.sin6_port = htons(p);
if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)))
goto fail;
r->fd = fd;
return 0;
fail:
close(fd);
return -1;
}
static int get_port(struct udp_fd *r, u_int16_t p, const struct call *c) {
int ret;
struct callmaster *m = c->callmaster;
assert(r->fd == -1);
__C_DBG("attempting to open port %u", p);
mutex_lock(&m->portlock);
if (bit_array_isset(m->ports_used, p)) {
mutex_unlock(&m->portlock);
__C_DBG("port in use");
return -1;
}
bit_array_set(m->ports_used, p);
mutex_unlock(&m->portlock);
__C_DBG("port locked");
ret = get_port6(r, p, c);
if (ret) {
__C_DBG("couldn't open port");
mutex_lock(&m->portlock);
bit_array_clear(m->ports_used, p);
mutex_unlock(&m->portlock);
return ret;
}
r->localport = p;
return 0;
}
static void release_port(struct udp_fd *r, struct callmaster *m) {
if (r->fd == -1 || !r->localport)
return;
__C_DBG("releasing port %u", r->localport);
mutex_lock(&m->portlock);
bit_array_clear(m->ports_used, r->localport);
mutex_unlock(&m->portlock);
close(r->fd);
r->fd = -1;
r->localport = 0;
}
int __get_consecutive_ports(struct udp_fd *array, int array_len, int wanted_start_port, const struct call *c) {
int i, j, cycle = 0;
struct udp_fd *it;
int port;
struct callmaster *m = c->callmaster;
memset(array, -1, sizeof(*array) * array_len);
if (wanted_start_port > 0)
port = wanted_start_port;
else {
mutex_lock(&m->portlock);
port = m->lastport;
mutex_unlock(&m->portlock);
#if PORT_RANDOM_MIN && PORT_RANDOM_MAX
port += PORT_RANDOM_MIN + (random() % (PORT_RANDOM_MAX - PORT_RANDOM_MIN));
#endif
}
while (1) {
if (!wanted_start_port) {
if (port < m->conf.port_min)
port = m->conf.port_min;
if ((port & 1))
port++;
}
for (i = 0; i < array_len; i++) {
it = &array[i];
if (!wanted_start_port && port > m->conf.port_max) {
port = 0;
cycle++;
goto release_restart;
}
if (get_port(it, port++, c))
goto release_restart;
}
break;
release_restart:
for (j = 0; j < i; j++)
release_port(&array[j], m);
if (cycle >= 2 || wanted_start_port > 0)
goto fail;
}
/* success */
mutex_lock(&m->portlock);
m->lastport = port;
mutex_unlock(&m->portlock);
ilog(LOG_DEBUG, "Opened ports %u..%u for media relay",
array[0].localport, array[array_len - 1].localport);
return 0;
fail:
ilog(LOG_ERR, "Failed to get %u consecutive UDP ports for relay",
array_len);
return -1;
}
static struct call_media *__get_media(struct call_monologue *ml, GList **it, const struct stream_params *sp) {
struct call_media *med;
/* iterator points to last seen element, or NULL if uninitialized */
if (!*it)
*it = ml->medias.head;
else
*it = (*it)->next;
/* possible incremental update, hunt for correct media struct */
while (*it) {
med = (*it)->data;
if (med->index == sp->index) {
__C_DBG("found existing call_media for stream #%u", sp->index);
return med;
}
*it = (*it)->next;
}
__C_DBG("allocating new call_media for stream #%u", sp->index);
med = g_slice_alloc0(sizeof(*med));
med->monologue = ml;
med->call = ml->call;
med->index = sp->index;
call_str_cpy(ml->call, &med->type, &sp->type);
g_queue_push_tail(&ml->medias, med);
*it = ml->medias.tail;
return med;
}
static void stream_fd_free(void *p) {
struct stream_fd *f = p;
struct callmaster *m = f->call->callmaster;
release_port(&f->fd, m);
crypto_cleanup(&f->crypto);
dtls_connection_cleanup(&f->dtls);
obj_put(f->call);
}
struct stream_fd *__stream_fd_new(struct udp_fd *fd, struct call *call) {
struct stream_fd *sfd;
struct poller_item pi;
struct poller *po = call->callmaster->poller;
sfd = obj_alloc0("stream_fd", sizeof(*sfd), stream_fd_free);
sfd->fd = *fd;
sfd->call = obj_get(call);
call->stream_fds = g_slist_prepend(call->stream_fds, sfd); /* hand over ref */
ZERO(pi);
pi.fd = sfd->fd.fd;
pi.obj = &sfd->obj;
pi.readable = stream_fd_readable;
pi.closed = stream_fd_closed;
poller_add_item(po, &pi);
return sfd;
}
static struct endpoint_map *__get_endpoint_map(struct call_media *media, unsigned int num_ports,
const struct endpoint *ep)
{
GSList *l;
struct endpoint_map *em;
struct udp_fd fd_arr[16];
unsigned int i;
struct stream_fd *sfd;
struct call *call = media->call;
for (l = media->endpoint_maps; l; l = l->next) {
em = l->data;
if (em->wildcard && em->sfds.length >= num_ports) {
__C_DBG("found a wildcard endpoint map%s", ep ? " and filling it in" : "");
if (ep) {
em->endpoint = *ep;
em->wildcard = 0;
}
return em;
}
if (!ep) /* creating wildcard map */
break;
/* handle zero endpoint address */
if (is_addr_unspecified(&ep->ip46) || is_addr_unspecified(&em->endpoint.ip46)) {
if (ep->port != em->endpoint.port)
continue;
}
else if (memcmp(&em->endpoint, ep, sizeof(*ep)))
continue;
if (em->sfds.length >= num_ports) {
if (is_addr_unspecified(&em->endpoint.ip46))
em->endpoint.ip46 = ep->ip46;
return em;
}
/* endpoint matches, but not enough ports. flush existing ports
* and allocate a new set. */
__C_DBG("endpoint matches, doesn't have enough ports");
g_queue_clear(&em->sfds);
goto alloc;
}
__C_DBG("allocating new %sendpoint map", ep ? "" : "wildcard ");
em = g_slice_alloc0(sizeof(*em));
if (ep)
em->endpoint = *ep;
else
em->wildcard = 1;
g_queue_init(&em->sfds);
media->endpoint_maps = g_slist_prepend(media->endpoint_maps, em);
alloc:
if (num_ports > G_N_ELEMENTS(fd_arr))
return NULL;
if (__get_consecutive_ports(fd_arr, num_ports, 0, media->call))
return NULL;
__C_DBG("allocating stream_fds for %u ports", num_ports);
for (i = 0; i < num_ports; i++) {
sfd = __stream_fd_new(&fd_arr[i], call);
g_queue_push_tail(&em->sfds, sfd); /* not referenced */
}
return em;
}
static void __assign_stream_fds(struct call_media *media, GList *sfds) {
GList *l;
struct packet_stream *ps;
struct stream_fd *sfd;
for (l = media->streams.head; l; l = l->next) {
assert(sfds != NULL);
ps = l->data;
sfd = sfds->data;
/* if we switch local ports, we reset crypto params */
if (ps->sfd && ps->sfd != sfd) {
dtls_shutdown(ps);
crypto_reset(&ps->sfd->crypto);
}
ps->sfd = sfd;
sfd->stream = ps;
sfds = sfds->next;
}
}
static int __wildcard_endpoint_map(struct call_media *media, unsigned int num_ports) {
struct endpoint_map *em;
em = __get_endpoint_map(media, num_ports, NULL);
if (!em)
return -1;
__assign_stream_fds(media, em->sfds.head);
return 0;
}
struct packet_stream *__packet_stream_new(struct call *call) {
struct packet_stream *stream;
stream = g_slice_alloc0(sizeof(*stream));
mutex_init(&stream->in_lock);
mutex_init(&stream->out_lock);
stream->call = call;
stream->last_packet = poller_now;
call->streams = g_slist_prepend(call->streams, stream);
return stream;
}
static int __num_media_streams(struct call_media *media, unsigned int num_ports) {
struct packet_stream *stream;
struct call *call = media->call;
int ret = 0;
__C_DBG("allocating %i new packet_streams", num_ports - media->streams.length);
while (media->streams.length < num_ports) {
stream = __packet_stream_new(call);
stream->media = media;
g_queue_push_tail(&media->streams, stream);
ret++;
}
g_queue_truncate(&media->streams, num_ports);
return ret;
}
static void __fill_stream(struct packet_stream *ps, const struct endpoint *ep, unsigned int port_off) {
ps->endpoint = *ep;
ps->endpoint.port += port_off;
/* we reset crypto params whenever the endpoint changes */
if (PS_ISSET(ps, FILLED) && memcmp(&ps->advertised_endpoint, &ps->endpoint, sizeof(ps->endpoint))) {
crypto_reset(&ps->crypto);
dtls_shutdown(ps);
}
ps->advertised_endpoint = ps->endpoint;
PS_SET(ps, FILLED);
}
static int __init_stream(struct packet_stream *ps) {
struct call_media *media = ps->media;
struct call *call = ps->call;
int active;
if (ps->sfd) {
if (MEDIA_ISSET(media, SDES))
crypto_init(&ps->sfd->crypto, &media->sdes_in.params);
if (MEDIA_ISSET(media, DTLS) && !PS_ISSET(ps, FALLBACK_RTCP)) {
active = (PS_ISSET(ps, FILLED) && MEDIA_ISSET(media, SETUP_ACTIVE));
dtls_connection_init(ps, active, call->dtls_cert);
if (!PS_ISSET(ps, FINGERPRINT_VERIFIED) && media->fingerprint.hash_func
&& ps->dtls_cert)
{
if (dtls_verify_cert(ps))
return -1;
}
}
}
if (MEDIA_ISSET(media, SDES))
crypto_init(&ps->crypto, &media->sdes_out.params);
return 0;
}
static int __init_streams(struct call_media *A, struct call_media *B, const struct stream_params *sp) {
GList *la, *lb;
struct packet_stream *a, *ax, *b;
unsigned int port_off = 0;
la = A->streams.head;
lb = B->streams.head;
while (la) {
assert(lb != NULL);
a = la->data;
b = lb->data;
/* RTP */
a->rtp_sink = b;
PS_SET(a, RTP);
if (sp) {
__fill_stream(a, &sp->rtp_endpoint, port_off);
bf_copy_same(&a->ps_flags, &sp->sp_flags,
SHARED_FLAG_STRICT_SOURCE | SHARED_FLAG_MEDIA_HANDOVER);
}
if (__init_stream(a))
return -1;
/* RTCP */
if (!MEDIA_ISSET(B, RTCP_MUX)) {
lb = lb->next;
assert(lb != NULL);
b = lb->data;
}
if (!MEDIA_ISSET(A, RTCP_MUX)) {
a->rtcp_sink = NULL;
PS_CLEAR(a, RTCP);
}
else {
a->rtcp_sink = b;
PS_SET(a, RTCP);
PS_CLEAR(a, IMPLICIT_RTCP);
}
ax = a;
/* if muxing, this is the fallback RTCP port. it also contains the RTCP
* crypto context */
la = la->next;
assert(la != NULL);
a = la->data;
a->rtp_sink = NULL;
a->rtcp_sink = b;
PS_CLEAR(a, RTP);
PS_SET(a, RTCP);
a->rtcp_sibling = NULL;
bf_copy(&a->ps_flags, PS_FLAG_FALLBACK_RTCP, &ax->ps_flags, PS_FLAG_RTCP);
ax->rtcp_sibling = a;
if (sp) {
if (!SP_ISSET(sp, IMPLICIT_RTCP)) {
__fill_stream(a, &sp->rtcp_endpoint, port_off);
PS_CLEAR(a, IMPLICIT_RTCP);
}
else {
__fill_stream(a, &sp->rtp_endpoint, port_off + 1);
PS_SET(a, IMPLICIT_RTCP);
}
bf_copy_same(&a->ps_flags, &sp->sp_flags,
SHARED_FLAG_STRICT_SOURCE | SHARED_FLAG_MEDIA_HANDOVER);
}
if (__init_stream(a))
return -1;
la = la->next;
lb = lb->next;
port_off += 2;
}
return 0;
}
static void __ice_offer(const struct sdp_ng_flags *flags, struct call_media *this,
struct call_media *other)
{
if (!flags)
return;
/* we offer ICE by default */
if (!MEDIA_ISSET(this, INITIALIZED))
MEDIA_SET(this, ICE);
if (flags->ice_remove)
MEDIA_CLEAR(this, ICE);
/* special case: if doing ICE on both sides and ice_force is not set, we cannot
* be sure that media will pass through us, so we have to disable certain features */
if (MEDIA_ISSET(this, ICE) && MEDIA_ISSET(other, ICE) && !flags->ice_force) {
ilog(LOG_DEBUG, "enabling passthrough mode");
MEDIA_SET(this, PASSTHRU);
MEDIA_SET(other, PASSTHRU);
}
}
/* generates SDES parametes for outgoing SDP, which is our media "out" direction */
static void __generate_crypto(const struct sdp_ng_flags *flags, struct call_media *this,
struct call_media *other)
{
struct crypto_params *cp = &this->sdes_out.params,
*cp_in = &this->sdes_in.params;
if (!flags)
return;
if (!this->protocol || !this->protocol->srtp || MEDIA_ISSET(this, PASSTHRU)) {
cp->crypto_suite = NULL;
MEDIA_CLEAR(this, DTLS);
MEDIA_CLEAR(this, SDES);
MEDIA_CLEAR(this, SETUP_PASSIVE);
MEDIA_CLEAR(this, SETUP_ACTIVE);
return;
}
if (flags->opmode == OP_OFFER) {
/* we always offer actpass */
MEDIA_SET(this, SETUP_PASSIVE);
MEDIA_SET(this, SETUP_ACTIVE);
}
else {
if (flags->dtls_passive && MEDIA_ISSET(this, SETUP_PASSIVE))
MEDIA_CLEAR(this, SETUP_ACTIVE);
/* if we can be active, we will, otherwise we'll be passive */
if (MEDIA_ISSET(this, SETUP_ACTIVE))
MEDIA_CLEAR(this, SETUP_PASSIVE);
}
if (!MEDIA_ISSET(this, INITIALIZED)) {
/* we offer both DTLS and SDES by default */
MEDIA_SET(this, DTLS);
MEDIA_SET(this, SDES);
}
else {
/* if we're talking to someone understanding DTLS, then skip the SDES stuff */
if (MEDIA_ISSET(this, DTLS)) {
MEDIA_CLEAR(this, SDES);
goto skip_sdes;
}
}
/* for answer case, otherwise we default to one */
this->sdes_out.tag = cp_in->crypto_suite ? this->sdes_in.tag : 1;
if (other->sdes_in.params.crypto_suite) {
/* SRTP <> SRTP case, copy from other stream */
crypto_params_copy(cp, &other->sdes_in.params);
return;
}
if (cp->crypto_suite)
return;
cp->crypto_suite = cp_in->crypto_suite;
if (!cp->crypto_suite)
cp->crypto_suite = &crypto_suites[0];
random_string((unsigned char *) cp->master_key,
cp->crypto_suite->master_key_len);
random_string((unsigned char *) cp->master_salt,
cp->crypto_suite->master_salt_len);
/* mki = mki_len = 0 */
skip_sdes:
;
}
static void __disable_streams(struct call_media *media, unsigned int num_ports) {
GList *l;
struct packet_stream *ps;
__num_media_streams(media, num_ports);
for (l = media->streams.head; l; l = l->next) {
ps = l->data;
ps->sfd = NULL;
}
}
static void __rtcp_mux_logic(const struct sdp_ng_flags *flags, struct call_media *media,
struct call_media *other_media)
{
if (!flags)
return;
if (flags->opmode == OP_ANSWER) {
/* default is to go with the client's choice, unless we were instructed not
* to do that in the offer (see below) */
if (!MEDIA_ISSET(media, RTCP_MUX_OVERRIDE))
bf_copy_same(&media->media_flags, &other_media->media_flags, MEDIA_FLAG_RTCP_MUX);
return;
}
if (flags->opmode != OP_OFFER)
return;
/* default is to pass through the client's choice, unless our peer is already
* talking rtcp-mux, then we stick to that */
if (!MEDIA_ISSET(media, RTCP_MUX))
bf_copy_same(&media->media_flags, &other_media->media_flags, MEDIA_FLAG_RTCP_MUX);
/* in our offer, we can override the client's choice */
if (flags->rtcp_mux_offer)
MEDIA_SET(media, RTCP_MUX);
else if (flags->rtcp_mux_demux)
MEDIA_CLEAR(media, RTCP_MUX);
/* we can also control what's going to happen in the answer. it
* depends on what was offered, but by default we go with the other
* client's choice */
MEDIA_CLEAR(other_media, RTCP_MUX_OVERRIDE);
if (MEDIA_ISSET(other_media, RTCP_MUX)) {
if (!MEDIA_ISSET(media, RTCP_MUX)) {
/* rtcp-mux was offered, but we don't offer it ourselves.
* the answer will not accept rtcp-mux (wasn't offered).
* the default is to accept the offer, unless we want to
* explicitly reject it. */
MEDIA_SET(other_media, RTCP_MUX_OVERRIDE);
if (flags->rtcp_mux_reject)
MEDIA_CLEAR(other_media, RTCP_MUX);
}
else {
/* rtcp-mux was offered and we offer it too. default is
* to go with the other client's choice, unless we want to
* either explicitly accept it (possibly demux) or reject
* it (possible reverse demux). */
if (flags->rtcp_mux_accept)
MEDIA_SET(other_media, RTCP_MUX_OVERRIDE);
else if (flags->rtcp_mux_reject) {
MEDIA_SET(other_media, RTCP_MUX_OVERRIDE);
MEDIA_CLEAR(other_media, RTCP_MUX);
}
}
}
else {
/* rtcp-mux was not offered. we may offer it, but since it wasn't
* offered to us, we must not accept it. */
MEDIA_SET(other_media, RTCP_MUX_OVERRIDE);
}
}
static void __fingerprint_changed(struct call_media *m) {
GList *l;
struct packet_stream *ps;
if (!m->fingerprint.hash_func)
return;
ilog(LOG_INFO, "DTLS fingerprint changed, restarting DTLS");
for (l = m->streams.head; l; l = l->next) {
ps = l->data;
PS_CLEAR(ps, FINGERPRINT_VERIFIED);
dtls_shutdown(ps);
}
}
static void __set_all_tos(struct call *c) {
GSList *l;
struct stream_fd *sfd;
for (l = c->stream_fds; l; l = l->next) {
sfd = l->data;
__set_tos(sfd->fd.fd, c);
}
}
static void __tos_change(struct call *call, const struct sdp_ng_flags *flags) {
unsigned char new_tos;
/* Handle TOS= parameter. Negative value = no change, not present or too large =
* revert to default, otherwise set specified value. We only do it in an offer, but
* then for both directions. */
if (flags && (flags->opmode != OP_OFFER || flags->tos < 0))
return;
if (!flags || flags->tos > 255)
new_tos = call->callmaster->conf.default_tos;
else
new_tos = flags->tos;
if (new_tos == call->tos)
return;
call->tos = new_tos;
__set_all_tos(call);
}
static void __init_interface(struct call_media *media, const str *ifname) {
/* we're holding master_lock in W mode here, so we can safely ignore the
* atomic ops */
struct interface_address *ifa = (void *) media->local_address;
if (!media->interface || !ifa)
goto get;
if (!ifname || !ifname->s)
return;
if (!str_cmp_str(&media->interface->name, ifname))
return;
get:
media->interface = get_local_interface(media->call->callmaster, ifname);
if (!media->interface) {
media->interface = get_local_interface(media->call->callmaster, NULL);
/* legacy support */
if (!str_cmp(ifname, "internal"))
media->desired_family = AF_INET;
else if (!str_cmp(ifname, "external"))
media->desired_family = AF_INET6;
else
ilog(LOG_WARNING, "Interface '"STR_FORMAT"' not found, using default", STR_FMT(ifname));
}
media->local_address = ifa = get_interface_address(media->interface, media->desired_family);
if (!ifa) {
ilog(LOG_WARNING, "No usable address in interface '"STR_FORMAT"' found, using default",
STR_FMT(ifname));
media->local_address = ifa = get_any_interface_address(media->interface, media->desired_family);
media->desired_family = family_from_address(&ifa->addr);
}
}
static void __dtls_logic(const struct sdp_ng_flags *flags, struct call_media *media,
struct call_media *other_media, struct stream_params *sp)
{
unsigned int tmp;
/* active and passive are from our POV */
tmp = other_media->media_flags;
bf_copy(&other_media->media_flags, MEDIA_FLAG_SETUP_PASSIVE,
&sp->sp_flags, SP_FLAG_SETUP_ACTIVE);
bf_copy(&other_media->media_flags, MEDIA_FLAG_SETUP_ACTIVE,
&sp->sp_flags, SP_FLAG_SETUP_PASSIVE);
if (flags) {
/* Special case: if this is an offer and actpass is being offered (as it should),
* we would normally choose to be active. However, if this is a reinvite and we
* were passive previously, we should retain this role. */
if (flags && flags->opmode == OP_OFFER && MEDIA_ISSET(other_media, SETUP_ACTIVE)
&& MEDIA_ISSET(other_media, SETUP_PASSIVE)
&& (tmp & (MEDIA_FLAG_SETUP_ACTIVE | MEDIA_FLAG_SETUP_PASSIVE))
== MEDIA_FLAG_SETUP_PASSIVE)
MEDIA_CLEAR(other_media, SETUP_ACTIVE);
/* if passive mode is requested, honour it if we can */
if (flags && flags->dtls_passive && MEDIA_ISSET(other_media, SETUP_PASSIVE))
MEDIA_CLEAR(other_media, SETUP_ACTIVE);
}
if (memcmp(&other_media->fingerprint, &sp->fingerprint, sizeof(sp->fingerprint))) {
__fingerprint_changed(other_media);
other_media->fingerprint = sp->fingerprint;
}
MEDIA_CLEAR(other_media, DTLS);
if ((MEDIA_ISSET(other_media, SETUP_PASSIVE) || MEDIA_ISSET(other_media, SETUP_ACTIVE))
&& other_media->fingerprint.hash_func)
MEDIA_SET(other_media, DTLS);
}
/* called with call->master_lock held in W */
int monologue_offer_answer(struct call_monologue *other_ml, GQueue *streams,
const struct sdp_ng_flags *flags)
{
struct stream_params *sp;
GList *media_iter, *ml_media, *other_ml_media;
struct call_media *media, *other_media;
unsigned int num_ports;
struct call_monologue *monologue = other_ml->active_dialogue;
struct endpoint_map *em;
struct call *call;
call = monologue->call;
call->last_signal = poller_now;
call->deleted = 0;
/* we must have a complete dialogue, even though the to-tag (monologue->tag)
* may not be known yet */
if (!other_ml) {
ilog(LOG_ERROR, "Incomplete dialogue association");
return -1;
}
__C_DBG("this="STR_FORMAT" other="STR_FORMAT, STR_FMT(&monologue->tag), STR_FMT(&other_ml->tag));
__tos_change(call, flags);
ml_media = other_ml_media = NULL;
for (media_iter = streams->head; media_iter; media_iter = media_iter->next) {
sp = media_iter->data;
__C_DBG("processing media stream #%u", sp->index);
/* first, check for existance of call_media struct on both sides of
* the dialogue */
media = __get_media(monologue, &ml_media, sp);
other_media = __get_media(other_ml, &other_ml_media, sp);
/* OTHER is the side which has sent the message. SDP parameters in
* "sp" are as advertised by OTHER side. The message will be sent to
* THIS side. Parameters sent to THIS side may be overridden by
* what's in "flags". If this is an answer, or if we have talked to
* THIS side (recipient) before, then the structs will be populated with
* details already. */
/* deduct protocol from stream parameters received */
if (other_media->protocol != sp->protocol) {
other_media->protocol = sp->protocol;
/* if the endpoint changes the protocol, we reset the other side's
* protocol as well. this lets us remember our previous overrides,
* but also lets endpoints re-negotiate. */
media->protocol = NULL;
}
/* allow override of outgoing protocol even if we know it already */
if (flags && flags->transport_protocol)
media->protocol = flags->transport_protocol;
else if (!media->protocol)
media->protocol = other_media->protocol;
/* copy parameters advertised by the sender of this message */
bf_copy_same(&other_media->media_flags, &sp->sp_flags,
SHARED_FLAG_RTCP_MUX | SHARED_FLAG_ASYMMETRIC | SHARED_FLAG_ICE);
crypto_params_copy(&other_media->sdes_in.params, &sp->crypto);
other_media->sdes_in.tag = sp->sdes_tag;
if (other_media->sdes_in.params.crypto_suite)
MEDIA_SET(other_media, SDES);
/* send and recv are from our POV */
bf_copy_same(&media->media_flags, &sp->sp_flags,
SP_FLAG_SEND | SP_FLAG_RECV);
bf_copy(&other_media->media_flags, MEDIA_FLAG_RECV, &sp->sp_flags, SP_FLAG_SEND);
bf_copy(&other_media->media_flags, MEDIA_FLAG_SEND, &sp->sp_flags, SP_FLAG_RECV);
/* DTLS stuff */
__dtls_logic(flags, media, other_media, sp);
/* ICE negotiation */
__ice_offer(flags, media, other_media);
/* control rtcp-mux */
__rtcp_mux_logic(flags, media, other_media);
/* SDES and DTLS */
__generate_crypto(flags, media, other_media);
/* deduct address family from stream parameters received */
other_media->desired_family = family_from_address(&sp->rtp_endpoint.ip46);
/* for outgoing SDP, use "direction"/DF or default to what was offered */
if (!media->desired_family)
media->desired_family = other_media->desired_family;
if (sp->desired_family)
media->desired_family = sp->desired_family;
/* local interface selection */
__init_interface(media, &sp->direction[1]);
__init_interface(other_media, &sp->direction[0]);
/* we now know what's being advertised by the other side */
MEDIA_SET(other_media, INITIALIZED);
/* determine number of consecutive ports needed locally.
* XXX only do *=2 for RTP streams? */
num_ports = sp->consecutive_ports;
num_ports *= 2;
if (!sp->rtp_endpoint.port) {
/* Zero port: stream has been rejected.
* RFC 3264, chapter 6:
* If a stream is rejected, the offerer and answerer MUST NOT
* generate media (or RTCP packets) for that stream. */
__disable_streams(media, num_ports);
__disable_streams(other_media, num_ports);
goto init;
}
if (is_addr_unspecified(&sp->rtp_endpoint.ip46)) {
/* Zero endpoint address, equivalent to setting the media stream
* to sendonly or inactive */
MEDIA_CLEAR(media, RECV);
MEDIA_CLEAR(other_media, SEND);
}
/* get that many ports for each side, and one packet stream for each port, then
* assign the ports to the streams */
em = __get_endpoint_map(media, num_ports, &sp->rtp_endpoint);
if (!em)
goto error;
__num_media_streams(media, num_ports);
__assign_stream_fds(media, em->sfds.head);
if (__num_media_streams(other_media, num_ports)) {
/* new streams created on OTHER side. normally only happens in
* initial offer. create a wildcard endpoint_map to be filled in
* when the answer comes. */
if (__wildcard_endpoint_map(other_media, num_ports))
goto error;
}
init:
if (__init_streams(media, other_media, NULL))
return -1;
if (__init_streams(other_media, media, sp))
return -1;
}
return 0;
error:
ilog(LOG_ERR, "Error allocating media ports");
return -1;
}
/* must be called with in_lock held or call->master_lock held in W */
static void unkernelize(struct packet_stream *p) {
if (!PS_ISSET(p, KERNELIZED))
return;
if (PS_ISSET(p, NO_KERNEL_SUPPORT))
return;
if (p->call->callmaster->conf.kernelfd >= 0)
kernel_del_stream(p->call->callmaster->conf.kernelfd, p->sfd->fd.localport);
PS_CLEAR(p, KERNELIZED);
}
/* called lock-free, but must hold a reference to the call */
void call_destroy(struct call *c) {
struct callmaster *m = c->callmaster;
struct packet_stream *ps;
struct stream_fd *sfd;
struct poller *p = m->poller;
GSList *l;
int ret;
struct call_monologue *ml;
struct call_media *md;
GList *k, *o;
char buf[64];
rwlock_lock_w(&m->hashlock);
ret = g_hash_table_remove(m->callhash, &c->callid);
rwlock_unlock_w(&m->hashlock);
if (!ret)
return;
obj_put(c);
redis_delete(c, m->conf.redis);
rwlock_lock_w(&c->master_lock);
/* at this point, no more packet streams can be added */
ilog(LOG_INFO, "Final packet stats:");
for (l = c->monologues; l; l = l->next) {
ml = l->data;
ilog(LOG_INFO, "--- Tag '"STR_FORMAT"', created "
"%u:%02u ago, in dialogue with '"STR_FORMAT"'",
STR_FMT(&ml->tag),
(unsigned int) (poller_now - ml->created) / 60,
(unsigned int) (poller_now - ml->created) % 60,
ml->active_dialogue ? ml->active_dialogue->tag.len : 6,
ml->active_dialogue ? ml->active_dialogue->tag.s : "(none)");
for (k = ml->medias.head; k; k = k->next) {
md = k->data;
for (o = md->streams.head; o; o = o->next) {
ps = o->data;
if (PS_ISSET(ps, FALLBACK_RTCP))
continue;
smart_ntop_p(buf, &ps->endpoint.ip46, sizeof(buf));
ilog(LOG_INFO, "------ Media #%u, port %5u <> %15s:%-5hu%s, "
"%llu p, %llu b, %llu e",
md->index,
(unsigned int) (ps->sfd ? ps->sfd->fd.localport : 0),
buf, ps->endpoint.port,
(!PS_ISSET(ps, RTP) && PS_ISSET(ps, RTCP)) ? " (RTCP)" : "",
(unsigned long long) ps->stats.packets,
(unsigned long long) ps->stats.bytes,
(unsigned long long) ps->stats.errors);
}
}
}
for (l = c->streams; l; l = l->next) {
ps = l->data;
unkernelize(ps);
dtls_shutdown(ps);
ps->sfd = NULL;
crypto_cleanup(&ps->crypto);
ps->rtp_sink = NULL;
ps->rtcp_sink = NULL;
}
while (c->stream_fds) {
sfd = c->stream_fds->data;
c->stream_fds = g_slist_delete_link(c->stream_fds, c->stream_fds);
poller_del_item(p, sfd->fd.fd);
obj_put(sfd);
}
rwlock_unlock_w(&c->master_lock);
}
static int call_stream_address4(char *o, struct packet_stream *ps, enum stream_address_format format,
int *len, struct interface_address *ifa)
{
u_int32_t ip4;
int l = 0;
if (format == SAF_NG) {
strcpy(o + l, "IP4 ");
l = 4;
}
if (!in6_to_4(&ps->advertised_endpoint.ip46)) {
strcpy(o + l, "0.0.0.0");
l += 7;
}
else {
ip4 = in6_to_4(&ifa->advertised);
l += sprintf(o + l, IPF, IPP(ip4));
}
*len = l;
return AF_INET;
}
static int call_stream_address6(char *o, struct packet_stream *ps, enum stream_address_format format,
int *len, struct interface_address *ifa)
{
int l = 0;
if (format == SAF_NG) {
strcpy(o + l, "IP6 ");
l += 4;
}
if (is_addr_unspecified(&ps->advertised_endpoint.ip46)) {
strcpy(o + l, "::");
l += 2;
}
else {
inet_ntop(AF_INET6, &ifa->advertised, o + l, 45); /* lies ... */
l += strlen(o + l);
}
*len = l;
return AF_INET6;
}
int call_stream_address46(char *o, struct packet_stream *ps, enum stream_address_format format,
int *len, struct interface_address *ifa)
{
struct packet_stream *sink;
sink = packet_stream_sink(ps);
if (ifa->family == AF_INET)
return call_stream_address4(o, sink, format, len, ifa);
return call_stream_address6(o, sink, format, len, ifa);
}
int call_stream_address(char *o, struct packet_stream *ps, enum stream_address_format format, int *len) {
struct interface_address *ifa;
struct call_media *media;
media = ps->media;
ifa = g_atomic_pointer_get(&media->local_address);
if (!ifa)
return -1;
return call_stream_address46(o, ps, format, len, ifa);
}
static void __call_free(void *p) {
struct call *c = p;
struct call_monologue *m;
struct call_media *md;
struct packet_stream *ps;
struct endpoint_map *em;
GList *it;
__C_DBG("freeing call struct");
call_buffer_free(&c->buffer);
mutex_destroy(&c->buffer_lock);
rwlock_destroy(&c->master_lock);
obj_put(c->dtls_cert);
while (c->monologues) {
m = c->monologues->data;
c->monologues = g_slist_delete_link(c->monologues, c->monologues);
g_hash_table_destroy(m->other_tags);
for (it = m->medias.head; it; it = it->next) {
md = it->data;
g_queue_clear(&md->streams);
while (md->endpoint_maps) {
em = md->endpoint_maps->data;
md->endpoint_maps = g_slist_delete_link(md->endpoint_maps, md->endpoint_maps);
g_queue_clear(&em->sfds);
g_slice_free1(sizeof(*em), em);
}
g_slice_free1(sizeof(*md), md);
}
g_queue_clear(&m->medias);
g_slice_free1(sizeof(*m), m);
}
g_hash_table_destroy(c->tags);
while (c->streams) {
ps = c->streams->data;
c->streams = g_slist_delete_link(c->streams, c->streams);
g_slice_free1(sizeof(*ps), ps);
}
assert(c->stream_fds == NULL);
}
static struct call *call_create(const str *callid, struct callmaster *m) {
struct call *c;
ilog(LOG_NOTICE, "["STR_FORMAT"] Creating new call",
STR_FMT(callid));
c = obj_alloc0("call", sizeof(*c), __call_free);
c->callmaster = m;
mutex_init(&c->buffer_lock);
call_buffer_init(&c->buffer);
rwlock_init(&c->master_lock);
c->tags = g_hash_table_new(str_hash, str_equal);
call_str_cpy(c, &c->callid, callid);
c->created = poller_now;
c->dtls_cert = dtls_cert();
c->tos = m->conf.default_tos;
return c;
}
/* returns call with master_lock held in W */
struct call *call_get_or_create(const str *callid, struct callmaster *m) {
struct call *c;
restart:
rwlock_lock_r(&m->hashlock);
c = g_hash_table_lookup(m->callhash, callid);
if (!c) {
rwlock_unlock_r(&m->hashlock);
/* completely new call-id, create call */
c = call_create(callid, m);
rwlock_lock_w(&m->hashlock);
if (g_hash_table_lookup(m->callhash, callid)) {
/* preempted */
rwlock_unlock_w(&m->hashlock);
obj_put(c);
goto restart;
}
g_hash_table_insert(m->callhash, &c->callid, obj_get(c));
rwlock_lock_w(&c->master_lock);
rwlock_unlock_w(&m->hashlock);
}
else {
obj_hold(c);
rwlock_lock_w(&c->master_lock);
rwlock_unlock_r(&m->hashlock);
}
log_info_call(c);
return c;
}
/* returns call with master_lock held in W, or NULL if not found */
static struct call *call_get(const str *callid, struct callmaster *m) {
struct call *ret;
rwlock_lock_r(&m->hashlock);
ret = g_hash_table_lookup(m->callhash, callid);
if (!ret) {
rwlock_unlock_r(&m->hashlock);
return NULL;
}
rwlock_lock_w(&ret->master_lock);
obj_hold(ret);
rwlock_unlock_r(&m->hashlock);
log_info_call(ret);
return ret;
}
/* returns call with master_lock held in W, or possibly NULL iff opmode == OP_ANSWER */
struct call *call_get_opmode(const str *callid, struct callmaster *m, enum call_opmode opmode) {
if (opmode == OP_OFFER)
return call_get_or_create(callid, m);
return call_get(callid, m);
}
/* must be called with call->master_lock held in W */
struct call_monologue *__monologue_create(struct call *call) {
struct call_monologue *ret;
__C_DBG("creating new monologue");
ret = g_slice_alloc0(sizeof(*ret));
ret->call = call;
ret->created = poller_now;
ret->other_tags = g_hash_table_new(str_hash, str_equal);
g_queue_init(&ret->medias);
call->monologues = g_slist_prepend(call->monologues, ret);
return ret;
}
/* must be called with call->master_lock held in W */
void __monologue_tag(struct call_monologue *ml, const str *tag) {
struct call *call = ml->call;
__C_DBG("tagging monologue with '"STR_FORMAT"'", STR_FMT(tag));
call_str_cpy(call, &ml->tag, tag);
g_hash_table_insert(call->tags, &ml->tag, ml);
}
static void __stream_unkernelize(struct packet_stream *ps) {
unkernelize(ps);
PS_CLEAR(ps, CONFIRMED);
PS_CLEAR(ps, HAS_HANDLER);
}
static void stream_unkernelize(struct packet_stream *ps) {
if (!ps)
return;
mutex_lock(&ps->in_lock);
__stream_unkernelize(ps);
mutex_unlock(&ps->in_lock);
}
/* must be called with call->master_lock held in W */
static void __monologue_unkernelize(struct call_monologue *monologue) {
GList *l, *m;
struct call_media *media;
struct packet_stream *stream;
if (!monologue)
return;
monologue->deleted = 0; /* not really related, but indicates activity, so cancel
any pending deletion */
for (l = monologue->medias.head; l; l = l->next) {
media = l->data;
for (m = media->streams.head; m; m = m->next) {
stream = m->data;
__stream_unkernelize(stream);
if (stream->rtp_sink)
__stream_unkernelize(stream->rtp_sink);
if (stream->rtcp_sink)
__stream_unkernelize(stream->rtcp_sink);
}
}
}
/* must be called with call->master_lock held in W */
static void __monologue_destroy(struct call_monologue *monologue) {
struct call *call;
struct call_monologue *dialogue;
GList *l;
call = monologue->call;
g_hash_table_remove(call->tags, &monologue->tag);
l = g_hash_table_get_values(monologue->other_tags);
while (l) {
dialogue = l->data;
l = g_list_delete_link(l, l);
g_hash_table_remove(dialogue->other_tags, &monologue->tag);
if (!g_hash_table_size(dialogue->other_tags))
__monologue_destroy(dialogue);
}
}
/* must be called with call->master_lock held in W */
static struct call_monologue *call_get_monologue(struct call *call, const str *fromtag) {
struct call_monologue *ret;
__C_DBG("getting monologue for tag '"STR_FORMAT"' in call '"STR_FORMAT"'",
STR_FMT(fromtag), STR_FMT(&call->callid));
ret = g_hash_table_lookup(call->tags, fromtag);
if (ret) {
__C_DBG("found existing monologue");
__monologue_unkernelize(ret);
__monologue_unkernelize(ret->active_dialogue);
return ret;
}
ret = __monologue_create(call);
__monologue_tag(ret, fromtag);
/* we need both sides of the dialogue even in the initial offer, so create
* another monologue without to-tag (to be filled in later) */
ret->active_dialogue = __monologue_create(call);
return ret;
}
/* must be called with call->master_lock held in W */
static struct call_monologue *call_get_dialogue(struct call *call, const str *fromtag, const str *totag) {
struct call_monologue *ft, *ret, *tt;
__C_DBG("getting dialogue for tags '"STR_FORMAT"'<>'"STR_FORMAT"' in call '"STR_FORMAT"'",
STR_FMT(fromtag), STR_FMT(totag), STR_FMT(&call->callid));
/* if the to-tag is known already, return that */
tt = g_hash_table_lookup(call->tags, totag);
if (tt) {
__C_DBG("found existing dialogue");
__monologue_unkernelize(tt);
__monologue_unkernelize(tt->active_dialogue);
/* make sure that the dialogue is actually intact */
if (!str_cmp_str(fromtag, &tt->active_dialogue->tag))
return tt;
}
/* otherwise, at least the from-tag has to be known. it's an error if it isn't */
ft = g_hash_table_lookup(call->tags, fromtag);
if (!ft)
return NULL;
__monologue_unkernelize(ft);
/* check for a half-complete dialogue and fill in the missing half if possible */
ret = ft->active_dialogue;
__monologue_unkernelize(ret);
if (!ret->tag.s)
goto tag;
/* we may have seen both tags previously and they just need to be linked up */
if (tt) {
ret = tt;
goto link;
}
/* this is an additional dialogue created from a single from-tag */
ret = __monologue_create(call);
tag:
__monologue_tag(ret, totag);
link:
g_hash_table_insert(ret->other_tags, &ft->tag, ft);
g_hash_table_insert(ft->other_tags, &ret->tag, ret);
ret->active_dialogue = ft;
ft->active_dialogue = ret;
return ret;
}
struct call_monologue *call_get_mono_dialogue(struct call *call, const str *fromtag, const str *totag) {
if (!totag || !totag->s) /* offer, not answer */
return call_get_monologue(call, fromtag);
return call_get_dialogue(call, fromtag, totag);
}
int call_delete_branch(struct callmaster *m, const str *callid, const str *branch,
const str *fromtag, const str *totag, bencode_item_t *output)
{
struct call *c;
struct call_monologue *ml;
int ret;
const str *match_tag;
c = call_get(callid, m);
if (!c) {
ilog(LOG_INFO, "["STR_FORMAT"] Call-ID to delete not found", STR_FMT(callid));
goto err;
}
if (!fromtag || !fromtag->s || !fromtag->len)
goto del_all;
match_tag = (totag && totag->s && totag->len) ? totag : fromtag;
ml = g_hash_table_lookup(c->tags, match_tag);
if (!ml) {
ilog(LOG_INFO, "Tag '"STR_FORMAT"' in delete message not found, ignoring",
STR_FMT(match_tag));
goto err;
}
if (output)
ng_call_stats(c, fromtag, totag, output, NULL);
/*
if (branch && branch->len) {
if (!g_hash_table_remove(c->branches, branch)) {
ilog(LOG_INFO, LOG_PREFIX_CI "Branch to delete doesn't exist", STR_FMT(&c->callid), STR_FMT(branch));
goto err;
}
ilog(LOG_INFO, LOG_PREFIX_CI "Branch deleted", LOG_PARAMS_CI(c));
if (g_hash_table_size(c->branches))
goto success_unlock;
else
DBG("no branches left, deleting full call");
}
*/
ilog(LOG_INFO, "Scheduling deletion of call branch '"STR_FORMAT"' in %d seconds",
STR_FMT(&ml->tag), DELETE_DELAY);
ml->deleted = poller_now + 30;
if (!c->ml_deleted || c->ml_deleted > ml->deleted)
c->ml_deleted = ml->deleted;
goto success_unlock;
del_all:
ilog(LOG_INFO, "Scheduling deletion of entire call in %d seconds", DELETE_DELAY);
c->deleted = poller_now + DELETE_DELAY;
rwlock_unlock_w(&c->master_lock);
goto success;
success_unlock:
rwlock_unlock_w(&c->master_lock);
success:
ret = 0;
goto out;
err:
if (c)
rwlock_unlock_w(&c->master_lock);
ret = -1;
goto out;
out:
if (c)
obj_put(c);
return ret;
}
static void callmaster_get_all_calls_interator(void *key, void *val, void *ptr) {
GQueue *q = ptr;
g_queue_push_tail(q, obj_get_o(val));
}
void callmaster_get_all_calls(struct callmaster *m, GQueue *q) {
rwlock_lock_r(&m->hashlock);
g_hash_table_foreach(m->callhash, callmaster_get_all_calls_interator, q);
rwlock_unlock_r(&m->hashlock);
}
static void calls_dump_iterator(void *key, void *val, void *ptr) {
struct call *c = val;
struct callmaster *m = c->callmaster;
redis_update(c, m->conf.redis);
}
void calls_dump_redis(struct callmaster *m) {
if (!m->conf.redis)
return;
ilog(LOG_DEBUG, "Start dumping all call data to Redis...\n");
redis_wipe_mod(m->conf.redis);
g_hash_table_foreach(m->callhash, calls_dump_iterator, NULL);
ilog(LOG_DEBUG, "Finished dumping all call data to Redis\n");
}
const struct transport_protocol *transport_protocol(const str *s) {
int i;
if (!s || !s->s)
goto out;
for (i = 0; i < num_transport_protocols; i++) {
if (strlen(transport_protocols[i].name) != s->len)
continue;
if (strncasecmp(transport_protocols[i].name, s->s, s->len))
continue;
return &transport_protocols[i];
}
out:
return NULL;
}
void callmaster_config_init(struct callmaster *m) {
GList *l;
struct interface_address *ifa;
struct local_interface *lif;
m->interfaces = g_hash_table_new(str_hash, str_equal);
for (l = m->conf.interfaces->head; l; l = l->next) {
ifa = l->data;
lif = g_hash_table_lookup(m->interfaces, &ifa->interface_name);
if (!lif) {
lif = g_slice_alloc0(sizeof(*lif));
lif->name = ifa->interface_name;
g_hash_table_insert(m->interfaces, &lif->name, lif);
g_queue_push_tail(&m->interface_list, lif);
}
if (IN6_IS_ADDR_V4MAPPED(&ifa->addr))
g_queue_push_tail(&lif->ipv4, ifa);
else
g_queue_push_tail(&lif->ipv6, ifa);
sdp_ice_foundation(ifa);
}
}
struct local_interface *get_local_interface(struct callmaster *m, const str *name) {
struct local_interface *lif;
if (!name || !name->s)
return m->interface_list.head->data;
lif = g_hash_table_lookup(m->interfaces, name);
return lif;
}
static const GQueue *get_interface_addresses(struct local_interface *lif, int family) {
if (!lif)
return NULL;
switch (family) {
case AF_INET:
return &lif->ipv4;
break;
case AF_INET6:
return &lif->ipv6;
break;
default:
return NULL;
}
}
static struct interface_address *get_interface_address(struct local_interface *lif, int family) {
const GQueue *q;
q = get_interface_addresses(lif, family);
if (!q || !q->head)
return NULL;
return q->head->data;
}
/* safety fallback */
struct interface_address *get_any_interface_address(struct local_interface *lif, int family) {
struct interface_address *ifa;
GQueue q = G_QUEUE_INIT;
get_all_interface_addresses(&q, lif, family);
ifa = q.head->data;
g_queue_clear(&q);
return ifa;
}
void get_all_interface_addresses(GQueue *q, struct local_interface *lif, int family) {
g_queue_append(q, get_interface_addresses(lif, family));
if (family == AF_INET)
g_queue_append(q, get_interface_addresses(lif, AF_INET6));
else
g_queue_append(q, get_interface_addresses(lif, AF_INET));
}
struct interface_address *get_interface_from_address(struct local_interface *lif, const struct in6_addr *addr) {
GQueue *q;
GList *l;
struct interface_address *ifa;
if (IN6_IS_ADDR_V4MAPPED(addr))
q = &lif->ipv4;
else
q = &lif->ipv6;
for (l = q->head; l; l = l->next) {
ifa = l->data;
if (!memcmp(&ifa->addr, addr, sizeof(*addr)))
return ifa;
}
return NULL;
}