You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kamailio/mem/f_malloc.c

1260 lines
30 KiB

/*
* Copyright (C) 2001-2003 FhG Fokus
*
* This file is part of Kamailio, a free SIP server.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* \file
* \brief Simple, very fast, malloc library
* \ingroup mem
*/
#if defined(F_MALLOC)
#include <string.h>
#include <stdlib.h>
#include "f_malloc.h"
#include "../dprint.h"
#include "../globals.h"
#include "../compiler_opt.h"
#include "memdbg.h"
#include "../bit_scan.h"
#include "../cfg/cfg.h" /* memlog */
#ifdef MALLOC_STATS
#include "../events.h"
#endif
/* useful macros */
#define FRAG_NEXT(f) \
((struct fm_frag*)((char*)(f)+sizeof(struct fm_frag)+(f)->size ))
#define FRAG_OVERHEAD (sizeof(struct fm_frag))
#define INIT_OVERHEAD \
(ROUNDUP(sizeof(struct fm_block))+2*sizeof(struct fm_frag))
/** ROUNDTO= 2^k so the following works */
#define ROUNDTO_MASK (~((unsigned long)ROUNDTO-1))
#define ROUNDUP(s) (((s)+(ROUNDTO-1))&ROUNDTO_MASK)
#define ROUNDDOWN(s) ((s)&ROUNDTO_MASK)
/** finds the hash value for s, s=ROUNDTO multiple */
#define GET_HASH(s) ( ((unsigned long)(s)<=F_MALLOC_OPTIMIZE)?\
(unsigned long)(s)/ROUNDTO: \
F_MALLOC_OPTIMIZE/ROUNDTO+big_hash_idx((s))- \
F_MALLOC_OPTIMIZE_FACTOR+1 )
#define UN_HASH(h) ( ((unsigned long)(h)<=(F_MALLOC_OPTIMIZE/ROUNDTO))?\
(unsigned long)(h)*ROUNDTO: \
1UL<<((unsigned long)(h)-F_MALLOC_OPTIMIZE/ROUNDTO+\
F_MALLOC_OPTIMIZE_FACTOR-1)\
)
#ifdef F_MALLOC_HASH_BITMAP
#define fm_bmp_set(qm, b) \
do{ \
(qm)->free_bitmap[(b)/FM_HASH_BMP_BITS] |= \
1UL<<((b)%FM_HASH_BMP_BITS); \
}while(0)
#define fm_bmp_reset(qm, b) \
do{ \
(qm)->free_bitmap[(b)/FM_HASH_BMP_BITS] &= \
~(1UL<<((b)%FM_HASH_BMP_BITS)); \
}while(0)
/** returns 0 if not set, !=0 if set */
#define fm_bmp_is_set(qm, b) \
((qm)->free_bitmap[(b)/FM_HASH_BMP_BITS] & (1UL<<((b)%FM_HASH_BMP_BITS)))
#define fm_is_free(f) ((f)->is_free)
/**
* \brief Find the first free fragment in a memory block
*
* Find the first free fragment in a memory block
* \param qm searched memory block
* \param start start value
* \return index for free fragment
*/
inline static int fm_bmp_first_set(struct fm_block* qm, int start)
{
int bmp_idx;
int bit;
int r;
fm_hash_bitmap_t test_val;
fm_hash_bitmap_t v;
bmp_idx=start/FM_HASH_BMP_BITS;
bit=start%FM_HASH_BMP_BITS;
test_val=1UL <<((unsigned long)bit);
if (qm->free_bitmap[bmp_idx] & test_val)
return start;
else if (qm->free_bitmap[bmp_idx] & ~(test_val-1)){
#if 0
test_val<<=1;
for (r=bit+1; r<FM_HASH_BMP_BITS; r++, test_val<<=1){
if (qm->free_bitmap[bmp_idx] & test_val)
return (start-bit+r);
}
#endif
if((bit+1) < 8*sizeof(v)) v=qm->free_bitmap[bmp_idx]>>(bit+1);
else v = 0;
return start+1+bit_scan_forward((unsigned long)v);
}
for (r=bmp_idx+1;r<FM_HASH_BMP_SIZE; r++){
if (qm->free_bitmap[r]){
/* find first set bit */
return r*FM_HASH_BMP_BITS+
bit_scan_forward((unsigned long)qm->free_bitmap[r]);
}
}
/* not found, nothing free */
return -1;
}
#endif /* F_MALLOC_HASH_BITMAP */
/* mark/test used/unused frags */
#define FRAG_MARK_USED(f)
#define FRAG_CLEAR_USED(f)
#define FRAG_WAS_USED(f) (1)
/* other frag related defines:
* MEM_COALESCE_FRAGS
* MEM_FRAG_AVOIDANCE
*/
#define MEM_FRAG_AVOIDANCE
/** computes hash number for big buckets */
#define big_hash_idx(s) ((unsigned long)bit_scan_reverse((unsigned long)(s)))
/**
* \name Memory manager boundary check pattern
*/
/*@{ */
#define ST_CHECK_PATTERN 0xf0f0f0f0 /** inserted at the beginning */
#define END_CHECK_PATTERN1 0xc0c0c0c0 /** inserted at the end */
#define END_CHECK_PATTERN2 0xabcdefed /** inserted at the end */
/*@} */
/**
* \brief Extract memory fragment from free list
* \param qm memory block
* \param frag memory fragment
*/
static inline void fm_extract_free(struct fm_block* qm, struct fm_frag* frag)
{
int hash;
hash = GET_HASH(frag->size);
if(frag->prev_free) {
frag->prev_free->next_free = frag->next_free;
} else {
qm->free_hash[hash].first = frag->next_free;
}
if(frag->next_free) {
frag->next_free->prev_free = frag->prev_free;
}
frag->prev_free = NULL;
frag->next_free = NULL;
frag->is_free = 0;
qm->ffrags--;
qm->free_hash[hash].no--;
#ifdef F_MALLOC_HASH_BITMAP
if (qm->free_hash[hash].no==0)
fm_bmp_reset(qm, hash);
#endif /* F_MALLOC_HASH_BITMAP */
qm->real_used+=frag->size;
qm->used+=frag->size;
}
/**
* \brief Insert a memory fragment in a memory block
* \param qm memory block
* \param frag memory fragment
*/
static inline void fm_insert_free(struct fm_block* qm, struct fm_frag* frag)
{
struct fm_frag* f;
struct fm_frag* p;
int hash;
hash=GET_HASH(frag->size);
f=qm->free_hash[hash].first;
p=NULL;
if (frag->size > F_MALLOC_OPTIMIZE){ /* because of '<=' in GET_HASH,
(different from 0.8.1[24] on
purpose --andrei ) */
/* large fragments list -- add at a position ordered by size */
for(; f; f=f->next_free){
if (frag->size <= f->size) break;
p = f;
}
frag->next_free = f;
frag->prev_free = p;
if(f) {
f->prev_free = frag;
}
if(p) {
p->next_free = frag;
} else {
qm->free_hash[hash].first = frag;
}
} else {
/* fixed fragment size list -- add first */
frag->prev_free = 0;
frag->next_free = f;
if(f) {
f->prev_free = frag;
}
qm->free_hash[hash].first = frag;
}
frag->is_free = 1;
qm->ffrags++;
qm->free_hash[hash].no++;
#ifdef F_MALLOC_HASH_BITMAP
fm_bmp_set(qm, hash);
#endif /* F_MALLOC_HASH_BITMAP */
qm->used-=frag->size;
qm->real_used-=frag->size;
}
/**
*\brief Split a memory fragement
*
* Split a memory fragement, size should be already rounded-up
* \param qm memory block
* \param frag memory fragment
* \param size fragement size
*/
static inline
#ifdef DBG_F_MALLOC
void fm_split_frag(struct fm_block* qm, struct fm_frag* frag,
size_t size,
const char* file, const char* func, unsigned int line,
const char* mname)
#else
void fm_split_frag(struct fm_block* qm, struct fm_frag* frag,
size_t size)
#endif
{
size_t rest;
struct fm_frag* n;
rest=frag->size-size;
#ifdef MEM_FRAG_AVOIDANCE
if ((rest> (FRAG_OVERHEAD+F_MALLOC_OPTIMIZE))||
(rest>=(FRAG_OVERHEAD+size))){ /* the residue fragm. is big enough*/
#else
if (rest>(FRAG_OVERHEAD+MIN_FRAG_SIZE)){
#endif
frag->size=size;
/*split the fragment*/
n=FRAG_NEXT(frag);
n->size=rest-FRAG_OVERHEAD;
FRAG_CLEAR_USED(n); /* never used */
#ifdef DBG_F_MALLOC
/* frag created by malloc, mark it*/
n->file=file;
n->func="frag. from fm_split_frag";
n->line=line;
n->mname=mname;
#endif
n->check=ST_CHECK_PATTERN;
/* reinsert n in free list*/
qm->used-=FRAG_OVERHEAD;
fm_insert_free(qm, n);
}else{
/* we cannot split this fragment any more => alloc all of it*/
}
}
/**
* \brief Initialize memory manager malloc
* \param address start address for memory block
* \param size Size of allocation
* \return return the fm_block
*/
struct fm_block* fm_malloc_init(char* address, unsigned long size, int type)
{
char* start;
char* end;
struct fm_block* qm;
unsigned long init_overhead;
/* make address and size multiple of 8*/
start=(char*)ROUNDUP((unsigned long) address);
DBG("fm_malloc_init: F_OPTIMIZE=%lu, /ROUNDTO=%lu\n",
F_MALLOC_OPTIMIZE, F_MALLOC_OPTIMIZE/ROUNDTO);
DBG("fm_malloc_init: F_HASH_SIZE=%lu, fm_block size=%lu\n",
F_HASH_SIZE, (unsigned long)sizeof(struct fm_block));
DBG("fm_malloc_init(%p, %lu), start=%p\n", address, (unsigned long)size,
start);
if (size<start-address) return 0;
size-=(start-address);
if (size <(MIN_FRAG_SIZE+FRAG_OVERHEAD)) return 0;
size=ROUNDDOWN(size);
init_overhead=INIT_OVERHEAD;
if (size < init_overhead)
{
/* not enough mem to create our control structures !!!*/
LOG(L_ERR, "fm_malloc_init(%lu); No memory left to create control structures!\n",
(unsigned long)size);
return 0;
}
end=start+size;
qm=(struct fm_block*)start;
memset(qm, 0, sizeof(struct fm_block));
qm->size=size;
qm->used = size - init_overhead;
qm->real_used=size;
qm->max_real_used=init_overhead;
qm->type = type;
size-=init_overhead;
qm->first_frag=(struct fm_frag*)(start+ROUNDUP(sizeof(struct fm_block)));
qm->last_frag=(struct fm_frag*)(end-sizeof(struct fm_frag));
/* init first fragment*/
qm->first_frag->size=size;
qm->first_frag->prev_free=0;
qm->first_frag->next_free=0;
qm->first_frag->is_free=0;
/* init last fragment*/
qm->last_frag->size=0;
qm->last_frag->prev_free=0;
qm->last_frag->next_free=0;
qm->last_frag->is_free=0;
qm->first_frag->check=ST_CHECK_PATTERN;
qm->last_frag->check=END_CHECK_PATTERN1;
/* link initial fragment into the free list*/
fm_insert_free(qm, qm->first_frag);
return qm;
}
/**
* \brief Try merging free fragments to fit requested size
* \param qm memory block
* \param size memory allocation size
* \return address of allocated memory
*/
struct fm_frag* fm_search_defrag(struct fm_block* qm, size_t size)
{
struct fm_frag* frag;
struct fm_frag* nxt;
frag = qm->first_frag;
while((char*)frag < (char*)qm->last_frag) {
nxt = FRAG_NEXT(frag);
if ( ((char*)nxt < (char*)qm->last_frag) && fm_is_free(frag)
&& fm_is_free(nxt)) {
/* join frag with all next consecutive free frags */
fm_extract_free(qm, frag);
do {
fm_extract_free(qm, nxt);
frag->size += nxt->size + FRAG_OVERHEAD;
/* after join - one frag less, add its overhead to used
* (real_used already has it - f and n were extracted */
qm->used += FRAG_OVERHEAD;
if( frag->size >size )
return frag;
nxt = FRAG_NEXT(frag);
} while (((char*)nxt < (char*)qm->last_frag) && fm_is_free(nxt));
fm_insert_free(qm, frag);
}
frag = nxt;
}
LOG(L_ERR, "fm_search_defrag(%p, %lu); Free fragment not found!\n", qm,
(unsigned long)size);
return 0;
}
/**
* \brief Main memory manager allocation function
*
* Main memory manager allocation function, provide functionality necessary for pkg_malloc
* \param qm memory block
* \param size memory allocation size
* \return address of allocated memory
*/
#ifdef DBG_F_MALLOC
void* fm_malloc(void* qmp, size_t size, const char* file,
const char* func, unsigned int line, const char* mname)
#else
void* fm_malloc(void* qmp, size_t size)
#endif
{
struct fm_block* qm;
struct fm_frag* f;
struct fm_frag* frag;
int hash;
qm = (struct fm_block*)qmp;
#ifdef DBG_F_MALLOC
MDBG("fm_malloc(%p, %lu) called from %s: %s(%d)\n", qm,
(unsigned long)size, file, func, line);
#endif
/*malloc(0) should return a valid pointer according to specs*/
if(unlikely(size==0)) size=4;
/*size must be a multiple of 8*/
size=ROUNDUP(size);
/*search for a suitable free frag*/
#ifdef F_MALLOC_HASH_BITMAP
hash=fm_bmp_first_set(qm, GET_HASH(size));
if (likely(hash>=0)){
if (likely(hash<=F_MALLOC_OPTIMIZE/ROUNDTO)) { /* return first match */
f=qm->free_hash[hash].first;
if(likely(f)) goto found;
#ifdef DBG_F_MALLOC
MDBG(" block %p hash %d empty but no. is %lu\n", qm,
hash, qm->free_hash[hash].no);
#endif
/* reset slot and try next hash */
qm->free_hash[hash].no=0;
fm_bmp_reset(qm, hash);
hash++;
}
/* if we are here we are searching next hash slot or a "big" fragment
between F_MALLOC_OPTIMIZE/ROUNDTO+1
and F_MALLOC_OPTIMIZE/ROUNDTO + (32|64) - F_MALLOC_OPTIMIZE_FACTOR
=> 18 hash buckets on 32 bits and 50 buckets on 64 bits
The free hash bitmap is used to jump directly to non-empty
hash buckets.
*/
do {
for(f=qm->free_hash[hash].first; f; f=f->next_free)
if (f->size>=size) goto found;
hash++; /* try in next hash cell */
}while((hash < F_HASH_SIZE) &&
((hash=fm_bmp_first_set(qm, hash)) >= 0));
}
#else /* F_MALLOC_HASH_BITMAP */
for(hash=GET_HASH(size);hash<F_HASH_SIZE;hash++){
f=qm->free_hash[hash].first;
for(; f; f=f->u.nxt_free)
if (f->size>=size) goto found;
/* try in a bigger bucket */
}
#endif /* F_MALLOC_HASH_BITMAP */
/* not found, search by defrag */
frag = fm_search_defrag(qm, size);
if(frag) goto finish;
#ifdef DBG_F_MALLOC
LOG(L_ERR, "fm_malloc(%p, %lu) called from %s: %s(%d), module: %s; Free fragment not found!\n",
qm, (unsigned long)size, file, func, line, mname);
#else
LOG(L_ERR, "fm_malloc(%p, %lu); Free fragment not found!\n",
qm, (unsigned long)size);
#endif
return 0;
found:
/* we found it!*/
/* detach it from the free list*/
frag=f;
fm_extract_free(qm, frag);
/*see if use full frag or split it in two*/
#ifdef DBG_F_MALLOC
fm_split_frag(qm, frag, size, file, func, line, mname);
#else
fm_split_frag(qm, frag, size);
#endif
finish:
#ifdef DBG_F_MALLOC
frag->file=file;
frag->func=func;
frag->mname=mname;
frag->line=line;
MDBG("fm_malloc(%p, %lu) returns address %p \n", qm, (unsigned long)size,
(char*)frag+sizeof(struct fm_frag));
#endif
frag->check=ST_CHECK_PATTERN;
if (qm->max_real_used<qm->real_used)
qm->max_real_used=qm->real_used;
FRAG_MARK_USED(frag); /* mark it as used */
if(qm->type==MEM_TYPE_PKG) {
sr_event_exec(SREV_PKG_UPDATE_STATS, 0);
}
return (char*)frag+sizeof(struct fm_frag);
}
#ifdef MEM_JOIN_FREE
/**
* join fragment free frag f with next one (if it is free)
*/
static void fm_join_frag(struct fm_block* qm, struct fm_frag* f)
{
struct fm_frag *n;
n=FRAG_NEXT(f);
/* check if n is valid and if in free list */
if (((char*)n >= (char*)qm->last_frag) || !fm_is_free(n))
return;
/* detach n from the free list */
fm_extract_free(qm, n);
/* join - f extended with size of n plus its overhead */
f->size+=n->size+FRAG_OVERHEAD;
/* after join - one frag less, add its overhead to used
* (real_used already has it - f and n were extracted */
qm->used += FRAG_OVERHEAD;
}
#endif /*MEM_JOIN_FREE*/
/**
* \brief Main memory manager free function
*
* Main memory manager free function, provide functionality necessary for pkg_free
* \param qm memory block
* \param p freed memory
*/
#ifdef DBG_F_MALLOC
void fm_free(void* qmp, void* p, const char* file, const char* func,
unsigned int line, const char* mname)
#else
void fm_free(void* qmp, void* p)
#endif
{
struct fm_block* qm;
struct fm_frag* f;
qm = (struct fm_block*)qmp;
#ifdef DBG_F_MALLOC
MDBG("fm_free(%p, %p), called from %s: %s(%d)\n", qm, p, file, func, line);
#endif
if (p==0) {
MDBG("WARNING:fm_free: free(0) called\n");
return;
}
#ifdef DBG_F_MALLOC
if (p>(void*)qm->last_frag || p<(void*)qm->first_frag){
LOG(L_CRIT, "BUG: fm_free: bad pointer %p (out of memory block!),"
" called from %s: %s(%d) - aborting\n", p,
file, func, line);
if(likely(cfg_get(core, core_cfg, mem_safety)==0))
abort();
else return;
}
#endif
f=(struct fm_frag*) ((char*)p-sizeof(struct fm_frag));
#ifdef DBG_F_MALLOC
MDBG("fm_free: freeing block alloc'ed from %s: %s(%ld)\n",
f->file, f->func, f->line);
#endif
if(unlikely(fm_is_free(f))) {
LM_INFO("freeing a free fragment (%p/%p) - ignore\n",
f, p);
return;
}
if(qm->type==MEM_TYPE_PKG) {
sr_event_exec(SREV_PKG_UPDATE_STATS, 0);
}
#ifdef DBG_F_MALLOC
f->file=file;
f->func=func;
f->line=line;
f->mname=mname;
#endif
#ifdef MEM_JOIN_FREE
if(unlikely(cfg_get(core, core_cfg, mem_join)!=0))
fm_join_frag(qm, f);
#endif /*MEM_JOIN_FREE*/
fm_insert_free(qm, f);
}
/**
* \brief Main memory manager realloc function
*
* Main memory manager realloc function, provide functionality for pkg_realloc
* \param qm memory block
* \param p reallocated memory block
* \param size
* \return reallocated memory block
*/
#ifdef DBG_F_MALLOC
void* fm_realloc(void* qmp, void* p, size_t size,
const char* file, const char* func, unsigned int line,
const char *mname)
#else
void* fm_realloc(void* qmp, void* p, size_t size)
#endif
{
struct fm_block* qm;
struct fm_frag *f;
size_t diff;
size_t orig_size;
struct fm_frag *n;
void *ptr;
qm = (struct fm_block*)qmp;
#ifdef DBG_F_MALLOC
MDBG("fm_realloc(%p, %p, %lu) called from %s: %s(%d)\n", qm, p,
(unsigned long)size, file, func, line);
if ((p)&&(p>(void*)qm->last_frag || p<(void*)qm->first_frag)){
LOG(L_CRIT, "BUG: fm_free: bad pointer %p (out of memory block!) - "
"aborting\n", p);
abort();
}
#endif
if (size==0) {
if (p)
#ifdef DBG_F_MALLOC
fm_free(qm, p, file, func, line, mname);
#else
fm_free(qm, p);
#endif
return 0;
}
if (p==0)
#ifdef DBG_F_MALLOC
return fm_malloc(qm, size, file, func, line, mname);
#else
return fm_malloc(qm, size);
#endif
f=(struct fm_frag*) ((char*)p-sizeof(struct fm_frag));
#ifdef DBG_F_MALLOC
MDBG("fm_realloc: realloc'ing frag %p alloc'ed from %s: %s(%ld)\n",
f, f->file, f->func, f->line);
#endif
size=ROUNDUP(size);
orig_size=f->size;
if (f->size > size){
/* shrink */
#ifdef DBG_F_MALLOC
MDBG("fm_realloc: shrinking from %lu to %lu\n", f->size,
(unsigned long)size);
fm_split_frag(qm, f, size, file, "frag. from fm_realloc", line, mname);
#else
fm_split_frag(qm, f, size);
#endif
}else if (f->size<size){
/* grow */
#ifdef DBG_F_MALLOC
MDBG("fm_realloc: growing from %lu to %lu\n", f->size,
(unsigned long)size);
#endif
diff=size-f->size;
n=FRAG_NEXT(f);
/*if next frag is free, check if a join has enough size*/
if (((char*)n < (char*)qm->last_frag) &&
fm_is_free(n) && ((n->size+FRAG_OVERHEAD)>=diff)){
/* detach n from the free list */
fm_extract_free(qm, n);
/* join */
f->size+=n->size+FRAG_OVERHEAD;
qm->used+=FRAG_OVERHEAD;
/* split it if necessary */
if (f->size > size){
#ifdef DBG_F_MALLOC
fm_split_frag(qm, f, size, file, "fragm. from fm_realloc",
line, mname);
#else
fm_split_frag(qm, f, size);
#endif
}
}else{
/* could not join => realloc */
#ifdef DBG_F_MALLOC
ptr=fm_malloc(qm, size, file, func, line, mname);
#else
ptr=fm_malloc(qm, size);
#endif
if (ptr){
/* copy, need by libssl */
memcpy(ptr, p, orig_size);
} else {
#ifdef DBG_F_MALLOC
LOG(L_ERR, "fm_realloc(%p, %lu) called from %s: %s(%d), module: %s; fm_malloc() failed!\n",
qm, (unsigned long)size, file, func, line, mname);
#else
LOG(L_ERR, "fm_realloc(%p, %lu); fm_malloc() failed!\n",
qm, (unsigned long)size);
#endif
}
#ifdef DBG_F_MALLOC
fm_free(qm, p, file, func, line, mname);
#else
fm_free(qm, p);
#endif
p=ptr;
}
}else{
/* do nothing */
#ifdef DBG_F_MALLOC
MDBG("fm_realloc: doing nothing, same size: %lu - %lu\n",
f->size, (unsigned long)size);
#endif
}
#ifdef DBG_F_MALLOC
MDBG("fm_realloc: returning %p\n", p);
#endif
if(qm->type==MEM_TYPE_PKG) {
sr_event_exec(SREV_PKG_UPDATE_STATS, 0);
}
return p;
}
/**
* \brief Report internal memory manager status
* \param qm memory block
*/
void fm_status(void* qmp)
{
struct fm_block* qm;
struct fm_frag* f;
int i,j;
int h;
int unused;
unsigned long size;
int memlog;
int mem_summary;
qm = (struct fm_block*)qmp;
memlog=cfg_get(core, core_cfg, memlog);
mem_summary=cfg_get(core, core_cfg, mem_summary);
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ", "fm_status (%p):\n", qm);
if (!qm) return;
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ", " heap size= %ld\n",
qm->size);
#if defined(DBG_F_MALLOC) || defined(MALLOC_STATS)
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
" used= %lu, used+overhead=%lu, free=%lu\n",
qm->used, qm->real_used, qm->size-qm->real_used);
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
" max used (+overhead)= %lu\n", qm->max_real_used);
#endif
if (mem_summary & 16) return;
/*
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ", "dumping all fragments:\n");
for (f=qm->first_frag, i=0;((char*)f<(char*)qm->last_frag) && (i<10);
f=FRAG_NEXT(f), i++){
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
" %3d. %c address=%x size=%d\n", i,
(f->u.reserved)?'a':'N',
(char*)f+sizeof(struct fm_frag), f->size);
#ifdef DBG_F_MALLOC
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
" %s from %s: %s(%d)\n",
(f->u.is_free)?"freed":"alloc'd", f->file, f->func, f->line);
#endif
}
*/
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ", "dumping free list:\n");
for(h=0,i=0,size=0;h<F_HASH_SIZE;h++){
unused=0;
for (f=qm->free_hash[h].first,j=0; f;
size+=f->size,f=f->next_free,i++,j++){
if (!FRAG_WAS_USED(f)){
unused++;
#ifdef DBG_F_MALLOC
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
"unused fragm.: hash = %3d, fragment %p,"
" address %p size %lu, created from %s: %s(%ld)\n",
h, f, (char*)f+sizeof(struct fm_frag), f->size,
f->file, f->func, f->line);
#endif
};
}
if (j) LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
"hash = %3d fragments no.: %5d, unused: %5d\n\t\t"
" bucket size: %9lu - %9lu (first %9lu)\n",
h, j, unused, UN_HASH(h),
((h<=F_MALLOC_OPTIMIZE/ROUNDTO)?1:2)* UN_HASH(h),
qm->free_hash[h].first->size
);
if (j!=qm->free_hash[h].no){
LOG(L_CRIT, "BUG: fm_status: different free frag. count: %d!=%ld"
" for hash %3d\n", j, qm->free_hash[h].no, h);
}
/*
{
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
" %5d.[%3d:%3d] %c address=%x size=%d(%x)\n",
i, h, j,
(f->u.reserved)?'a':'N',
(char*)f+sizeof(struct fm_frag), f->size, f->size);
#ifdef DBG_F_MALLOC
DBG(" %s from %s: %s(%d)\n",
(f->u.reserved)?"freed":"alloc'd", f->file, f->func, f->line);
#endif
}
*/
}
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
"TOTAL: %6d free fragments = %6lu free bytes\n", i, size);
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
"-----------------------------\n");
}
/**
* \brief Fills a malloc info structure with info about the block
*
* Fills a malloc info structure with info about the block, if a
* parameter is not supported, it will be filled with 0
* \param qm memory block
* \param info memory information
*/
void fm_info(void* qmp, struct mem_info* info)
{
struct fm_block* qm;
qm = (struct fm_block*)qmp;
memset(info,0, sizeof(*info));
info->total_size=qm->size;
info->min_frag=MIN_FRAG_SIZE;
info->free=qm->size-qm->real_used;
info->used=qm->used;
info->real_used=qm->real_used;
info->max_used=qm->max_real_used;
info->total_frags=qm->ffrags;
}
/**
* \brief Helper function for available memory report
* \param qm memory block
* \return Returns how much free memory is available, on error (not compiled
* with bookkeeping code) returns (unsigned long)(-1)
*/
unsigned long fm_available(void* qmp)
{
struct fm_block* qm;
qm = (struct fm_block*)qmp;
return qm->size-qm->real_used;
}
#ifdef DBG_F_MALLOC
static mem_counter* get_mem_counter(mem_counter **root,struct fm_frag* f)
{
mem_counter *x;
if (!*root) goto make_new;
for(x=*root;x;x=x->next)
if (x->file == f->file && x->func == f->func && x->line == f->line)
return x;
make_new:
x = malloc(sizeof(mem_counter));
x->file = f->file;
x->func = f->func;
x->line = f->line;
x->mname = f->mname;
x->count = 0;
x->size = 0;
x->next = *root;
*root = x;
return x;
}
/**
* \brief Debugging helper, summary and logs all allocated memory blocks
* \param qm memory block
*/
void fm_sums(void* qmp)
{
struct fm_block* qm;
qm = (struct fm_block*)qmp;
struct fm_frag* f;
int i;
int memlog;
mem_counter *root,*x;
root=0;
if (!qm) return;
memlog=cfg_get(core, core_cfg, memlog);
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
"summarizing all alloc'ed. fragments:\n");
for (f=qm->first_frag, i=0; (char*)f<(char*)qm->last_frag;
f=FRAG_NEXT(f), i++){
if (!fm_is_free(f)){
x = get_mem_counter(&root,f);
x->count++;
x->size+=f->size;
}
}
x = root;
while(x){
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
" count=%6d size=%10lu bytes from %s: %s(%ld)\n",
x->count,x->size,
x->file, x->func, x->line
);
root = x->next;
free(x);
x = root;
}
LOG_(DEFAULT_FACILITY, memlog, "fm_status: ",
"-----------------------------\n");
}
void fm_mod_get_stats(void *qmp, void **fm_rootp)
{
if (!fm_rootp) {
return ;
}
LM_DBG("get fm memory statistics\n");
struct fm_block *qm = (struct fm_block *) qmp;
mem_counter **fm_root = (mem_counter **) fm_rootp;
struct fm_frag* f;
int i;
mem_counter *x;
if (!qm) return ;
/* update fragment detail list */
for (f=qm->first_frag, i=0; (char*)f<(char*)qm->last_frag;
f=FRAG_NEXT(f), i++){
if (f->is_free==0){
x = get_mem_counter(fm_root,f);
x->count++;
x->size+=f->size;
}
}
return ;
}
void fm_mod_free_stats(void *fm_rootp)
{
if (!fm_rootp) {
return ;
}
LM_DBG("free fm memory statistics\n");
mem_counter *root = (mem_counter *) fm_rootp;
mem_counter *new, *old;
new = root;
old = root;
while (new) {
old = new;
new = new->next;
free(old);
}
}
#else
void fm_sums(void *qmp)
{
struct fm_block* qm;
int memlog;
qm = (struct fm_block*)qmp;
memlog=cfg_get(core, core_cfg, memlog);
LOG_(DEFAULT_FACILITY, memlog, "fm_sums: ", "not available (%p)\n", qm);
return;
}
void fm_mod_get_stats(void *qmp, void **fm_rootp)
{
LM_WARN("Enable DBG_F_MALLOC for getting statistics\n");
return ;
}
void fm_mod_free_stats(void *fm_rootp)
{
LM_WARN("Enable DBG_F_MALLOC for freeing statistics\n");
return ;
}
#endif /* DBG_F_MALLOC */
/*memory manager core api*/
static char *_fm_mem_name = "f_malloc";
/* PKG - private memory API*/
static char *_fm_pkg_pool = 0;
static struct fm_block *_fm_pkg_block = 0;
/**
* \brief Destroy memory pool
*/
void fm_malloc_destroy_pkg_manager(void)
{
if (_fm_pkg_pool) {
free(_fm_pkg_pool);
_fm_pkg_pool = 0;
}
_fm_pkg_block = 0;
}
/**
* \brief Init memory pool
*/
int fm_malloc_init_pkg_manager(void)
{
sr_pkg_api_t ma;
_fm_pkg_pool = malloc(pkg_mem_size);
if (_fm_pkg_pool)
_fm_pkg_block=fm_malloc_init(_fm_pkg_pool, pkg_mem_size, MEM_TYPE_PKG);
if (_fm_pkg_block==0){
LOG(L_CRIT, "could not initialize fm pkg memory pool\n");
fprintf(stderr, "Too much fm pkg memory demanded: %ld bytes\n",
pkg_mem_size);
return -1;
}
memset(&ma, 0, sizeof(sr_pkg_api_t));
ma.mname = _fm_mem_name;
ma.mem_pool = _fm_pkg_pool;
ma.mem_block = _fm_pkg_block;
ma.xmalloc = fm_malloc;
ma.xfree = fm_free;
ma.xrealloc = fm_realloc;
ma.xstatus = fm_status;
ma.xinfo = fm_info;
ma.xavailable = fm_available;
ma.xsums = fm_sums;
ma.xdestroy = fm_malloc_destroy_pkg_manager;
ma.xmodstats = fm_mod_get_stats;
ma.xfmodstats = fm_mod_free_stats;
return pkg_init_api(&ma);
}
/* SHM - shared memory API*/
static void *_fm_shm_pool = 0;
static struct fm_block *_fm_shm_block = 0;
/*SHM wrappers to sync the access to memory block*/
#ifdef DBG_F_MALLOC
void* fm_shm_malloc(void* qmp, size_t size,
const char* file, const char* func, unsigned int line, const char* mname)
{
void *r;
shm_lock();
r = fm_malloc(qmp, size, file, func, line, mname);
shm_unlock();
return r;
}
void* fm_shm_realloc(void* qmp, void* p, size_t size,
const char* file, const char* func, unsigned int line, const char* mname)
{
void *r;
shm_lock();
r = fm_realloc(qmp, p, size, file, func, line, mname);
shm_unlock();
return r;
}
void* fm_shm_resize(void* qmp, void* p, size_t size,
const char* file, const char* func, unsigned int line, const char* mname)
{
void *r;
shm_lock();
if(p) fm_free(qmp, p, file, func, line, mname);
r = fm_malloc(qmp, size, file, func, line, mname);
shm_unlock();
return r;
}
void fm_shm_free(void* qmp, void* p, const char* file, const char* func,
unsigned int line, const char* mname)
{
shm_lock();
fm_free(qmp, p, file, func, line, mname);
shm_unlock();
}
#else
void* fm_shm_malloc(void* qmp, size_t size)
{
void *r;
shm_lock();
r = fm_malloc(qmp, size);
shm_unlock();
return r;
}
void* fm_shm_realloc(void* qmp, void* p, size_t size)
{
void *r;
shm_lock();
r = fm_realloc(qmp, p, size);
shm_unlock();
return r;
}
void* fm_shm_resize(void* qmp, void* p, size_t size)
{
void *r;
shm_lock();
if(p) fm_free(qmp, p);
r = fm_malloc(qmp, size);
shm_unlock();
return r;
}
void fm_shm_free(void* qmp, void* p)
{
shm_lock();
fm_free(qmp, p);
shm_unlock();
}
#endif
void fm_shm_status(void* qmp)
{
shm_lock();
fm_status(qmp);
shm_unlock();
}
void fm_shm_info(void* qmp, struct mem_info* info)
{
shm_lock();
fm_info(qmp, info);
shm_unlock();
}
unsigned long fm_shm_available(void* qmp)
{
unsigned long r;
shm_lock();
r = fm_available(qmp);
shm_unlock();
return r;
}
void fm_shm_sums(void* qmp)
{
shm_lock();
fm_sums(qmp);
shm_unlock();
}
/**
* \brief Destroy memory pool
*/
void fm_malloc_destroy_shm_manager(void)
{
/*shm pool from core - nothing to do*/
_fm_shm_pool = 0;
_fm_shm_block = 0;
}
/**
* \brief Init memory pool
*/
int fm_malloc_init_shm_manager(void)
{
sr_shm_api_t ma;
_fm_shm_pool = shm_core_get_pool();
if (_fm_shm_pool)
_fm_shm_block=fm_malloc_init(_fm_shm_pool, shm_mem_size, MEM_TYPE_SHM);
if (_fm_shm_block==0){
LOG(L_CRIT, "could not initialize fm shm memory pool\n");
fprintf(stderr, "Too much fm shm memory demanded: %ld bytes\n",
shm_mem_size);
return -1;
}
memset(&ma, 0, sizeof(sr_shm_api_t));
ma.mname = _fm_mem_name;
ma.mem_pool = _fm_shm_pool;
ma.mem_block = _fm_shm_block;
ma.xmalloc = fm_shm_malloc;
ma.xmalloc_unsafe = fm_malloc;
ma.xfree = fm_shm_free;
ma.xfree_unsafe = fm_free;
ma.xrealloc = fm_shm_realloc;
ma.xresize = fm_shm_resize;
ma.xstatus = fm_shm_status;
ma.xinfo = fm_shm_info;
ma.xavailable = fm_shm_available;
ma.xsums = fm_shm_sums;
ma.xdestroy = fm_malloc_destroy_shm_manager;
ma.xmodstats = fm_mod_get_stats;
ma.xfmodstats = fm_mod_free_stats;
if(shm_init_api(&ma)<0) {
LM_ERR("cannot initialize the core shm api\n");
return -1;
}
if(shm_core_lock_init()<0) {
LM_ERR("cannot initialize the core shm lock\n");
return -1;
}
return 0;
}
#endif