You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kamailio/sr_module.c

2006 lines
49 KiB

/*
* Copyright (C) 2001-2003 FhG Fokus
*
* This file is part of Kamailio, a free SIP server.
*
* Kamailio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version
*
* Kamailio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* @brief Kamailio core :: modules loading, structures declarations and utilities
* @ingroup core
* Module: \ref core
*/
#include "sr_module.h"
#include "mod_fix.h"
#include "dprint.h"
#include "error.h"
#include "mem/mem.h"
#include "core_cmd.h"
#include "ut.h"
#include "re.h"
#include "route_struct.h"
#include "flags.h"
#include "trim.h"
#include "pvapi.h"
#include "globals.h"
#include "rpc_lookup.h"
#include "sr_compat.h"
#include "ppcfg.h"
#include "async_task.h"
#include <sys/stat.h>
#include <regex.h>
#include <dlfcn.h>
#include <strings.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h> /* for offsetof */
struct sr_module* modules=0;
/*We need to define this symbol on Solaris becuase libcurl relies on libnspr which looks for this symbol.
If it is not defined, dynamic module loading (dlsym) fails */
#ifdef __OS_solaris
int nspr_use_zone_allocator = 0;
#endif
#ifdef STATIC_EXEC
extern struct module_exports exec_exports;
#endif
#ifdef STATIC_TM
extern struct module_exports tm_exports;
#endif
#ifdef STATIC_MAXFWD
extern struct module_exports maxfwd_exports;
#endif
#ifdef STATIC_AUTH
extern struct module_exports auth_exports;
#endif
#ifdef STATIC_RR
extern struct module_exports rr_exports;
#endif
#ifdef STATIC_USRLOC
extern struct module_exports usrloc_exports;
#endif
#ifdef STATIC_SL
extern struct module_exports sl_exports;
#endif
#ifndef offsetof
#warning "use null pointer dereference for offsetof"
#define offsetof(st, m) \
((size_t) ( (char *)&((st *)(0))->m - (char *)0 ))
#endif
int mod_response_cbk_no=0;
response_function* mod_response_cbks=0;
/* number of usec to wait before initializing a module */
static unsigned int modinit_delay = 0;
unsigned int set_modinit_delay(unsigned int v)
{
unsigned int r;
r = modinit_delay;
modinit_delay = v;
return r;
}
/* keep state if server is in destroy modules phase */
static int _sr_destroy_modules_phase = 0;
/**
* return destroy modules phase state
*/
int destroy_modules_phase(void)
{
return _sr_destroy_modules_phase;
}
/**
* if bit 1 set, SIP worker processes handle RPC commands as well
* if bit 2 set, RPC worker processes handle SIP commands as well
*/
static int child_sip_rpc_mode = 0;
#define CHILD_SIP_RPC 1<<0
#define CHILD_RPC_SIP 1<<1
void set_child_sip_rpc_mode(void)
{
child_sip_rpc_mode |= CHILD_SIP_RPC;
}
void set_child_rpc_sip_mode(void)
{
child_sip_rpc_mode |= CHILD_RPC_SIP;
}
int is_rpc_worker(int rank)
{
if(rank==PROC_RPC
|| (rank>PROC_MAIN && (child_sip_rpc_mode&CHILD_SIP_RPC)!=0))
return 1;
return 0;
}
int is_sip_worker(int rank)
{
if(rank>PROC_MAIN
|| ((rank==PROC_RPC || rank==PROC_NOCHLDINIT)
&& (child_sip_rpc_mode&CHILD_RPC_SIP)!=0))
return 1;
return 0;
}
/* initializes statically built (compiled in) modules*/
int register_builtin_modules()
{
int ret;
ret=0;
#ifdef STATIC_TM
ret=register_module(MODULE_INTERFACE_VER, &tm_exports,"built-in", 0);
if (ret<0) return ret;
#endif
#ifdef STATIC_EXEC
ret=register_module(MODULE_INTERFACE_VER, &exec_exports,"built-in", 0);
if (ret<0) return ret;
#endif
#ifdef STATIC_MAXFWD
ret=register_module(MODULE_INTERFACE_VER, &maxfwd_exports, "built-in", 0);
if (ret<0) return ret;
#endif
#ifdef STATIC_AUTH
ret=register_module(MODULE_INTERFACE_VER, &auth_exports, "built-in", 0);
if (ret<0) return ret;
#endif
#ifdef STATIC_RR
ret=register_module(MODULE_INTERFACE_VER, &rr_exports, "built-in", 0);
if (ret<0) return ret;
#endif
#ifdef STATIC_USRLOC
ret=register_module(MODULE_INTERFACE_VER, &usrloc_exports, "built-in", 0);
if (ret<0) return ret;
#endif
#ifdef STATIC_SL
ret=register_module(MODULE_INTERFACE_VER, &sl_exports, "built-in", 0);
if (ret<0) return ret;
#endif
return ret;
}
/** convert cmd exports to current format.
* @param ver - module interface versions (0 == ser, 1 == kam).
* @param src - null terminated array of cmd exports
* (either ser_cmd_export_t or kam_cmd_export_t, depending
* on ver).
* @param mod - pointer to module exports structure.
* @return - pkg_malloc'ed null terminated sr_cmd_export_v31_t array with
* the converted cmd exports or 0 on error.
*/
static sr31_cmd_export_t* sr_cmd_exports_convert(unsigned ver,
void* src, void* mod)
{
int i, n;
ser_cmd_export_t* ser_cmd;
kam_cmd_export_t* kam_cmd;
sr31_cmd_export_t* ret;
ser_cmd = 0;
kam_cmd = 0;
ret = 0;
n = 0;
/* count the number of elements */
if (ver == 0) {
ser_cmd = src;
for (; ser_cmd[n].name; n++);
} else if (ver == 1) {
kam_cmd = src;
for (; kam_cmd[n].name; n++);
} else goto error; /* unknown interface version */
/* alloc & init new array */
ret = pkg_malloc(sizeof(*ret)*(n+1));
memset(ret, 0, sizeof(*ret)*(n+1));
/* convert/copy */
for (i=0; i < n; i++) {
if (ver == 0) {
ret[i].name = ser_cmd[i].name;
ret[i].function = ser_cmd[i].function;
ret[i].param_no = ser_cmd[i].param_no;
ret[i].fixup = ser_cmd[i].fixup;
ret[i].free_fixup = 0; /* no present in ser <= 2.1 */
ret[i].flags = ser_cmd[i].flags;
} else {
ret[i].name = kam_cmd[i].name;
ret[i].function = kam_cmd[i].function;
ret[i].param_no = kam_cmd[i].param_no;
ret[i].fixup = kam_cmd[i].fixup;
ret[i].free_fixup = kam_cmd[i].free_fixup;
ret[i].flags = kam_cmd[i].flags;
}
/* 3.1+ specific stuff */
ret[i].fixup_flags = 0;
ret[i].module_exports = mod;
/* fill known free fixups */
if (ret[i].fixup && ret[i].free_fixup == 0)
ret[i].free_fixup = get_fixup_free(ret[i].fixup);
}
return ret;
error:
return 0;
}
/* registers a module, register_f= module register functions
* returns <0 on error, 0 on success */
static int register_module(unsigned ver, union module_exports_u* e,
char* path, void* handle)
{
int ret, i;
struct sr_module* mod;
char defmod[64];
ret=-1;
/* add module to the list */
if ((mod=pkg_malloc(sizeof(struct sr_module)))==0){
LM_ERR("memory allocation failure\n");
ret=E_OUT_OF_MEM;
goto error;
}
memset(mod,0, sizeof(struct sr_module));
mod->path=path;
mod->handle=handle;
mod->orig_mod_interface_ver=ver;
/* convert exports to sr31 format */
if (ver == 0) {
/* ser <= 3.0 */
mod->exports.name = e->v0.name;
if (e->v0.cmds) {
mod->exports.cmds = sr_cmd_exports_convert(ver, e->v0.cmds, mod);
if (mod->exports.cmds == 0) {
LM_ERR("failed to convert module command exports to 3.1 format"
" for module \"%s\" (%s), interface version %d\n",
mod->exports.name, mod->path, ver);
ret = E_UNSPEC;
goto error;
}
}
mod->exports.params = e->v0.params;
mod->exports.init_f = e->v0.init_f;
mod->exports.response_f = e->v0.response_f;
mod->exports.destroy_f = e->v0.destroy_f;
mod->exports.onbreak_f = e->v0.onbreak_f;
mod->exports.init_child_f = e->v0.init_child_f;
mod->exports.dlflags = 0; /* not used in ser <= 3.0 */
mod->exports.rpc_methods = e->v0.rpc_methods;
/* the rest are 0, not used in ser */
} else if (ver == 1) {
/* kamailio <= 3.0 */
mod->exports.name = e->v1.name;
if (e->v1.cmds) {
mod->exports.cmds = sr_cmd_exports_convert(ver, e->v1.cmds, mod);
if (mod->exports.cmds == 0) {
LM_ERR("failed to convert module command exports to 3.1 format"
" for module \"%s\" (%s), interface version %d\n",
mod->exports.name, mod->path, ver);
ret = E_UNSPEC;
goto error;
}
}
mod->exports.params = e->v1.params;
mod->exports.init_f = e->v1.init_f;
mod->exports.response_f = e->v1.response_f;
mod->exports.destroy_f = e->v1.destroy_f;
mod->exports.onbreak_f = 0; /* not used in k <= 3.0 */
mod->exports.init_child_f = e->v1.init_child_f;
mod->exports.dlflags = e->v1.dlflags;
mod->exports.rpc_methods = 0; /* not used in k <= 3.0 */
mod->exports.stats = e->v1.stats;
mod->exports.mi_cmds = e->v1.mi_cmds;
mod->exports.items = e->v1.items;
mod->exports.procs = e->v1.procs;
} else {
LM_ERR("unsupported module interface version %d\n", ver);
ret = E_UNSPEC;
goto error;
}
if (mod->exports.items) {
/* register module pseudo-variables for kamailio modules */
LM_DBG("register PV from: %s\n", mod->exports.name);
if (register_pvars_mod(mod->exports.name, mod->exports.items)!=0) {
LM_ERR("failed to register pseudo-variables for module %s (%s)\n",
mod->exports.name, path);
ret = E_UNSPEC;
goto error;
}
}
if (mod->exports.rpc_methods){
/* register rpcs for ser modules */
i=rpc_register_array(mod->exports.rpc_methods);
if (i<0){
LM_ERR("failed to register RPCs for module %s (%s)\n",
mod->exports.name, path);
ret = E_UNSPEC;
goto error;
}else if (i>0){
LM_ERR("%d duplicate RPCs name detected while registering RPCs"
" declared in module %s (%s)\n",
i, mod->exports.name, path);
ret = E_UNSPEC;
goto error;
}
/* i==0 => success */
}
/* add cfg define for each module: MOD_modulename */
if(strlen(mod->exports.name)>=60) {
LM_ERR("too long module name: %s\n", mod->exports.name);
goto error;
}
strcpy(defmod, "MOD_");
strcat(defmod, mod->exports.name);
pp_define_set_type(0);
if(pp_define(strlen(defmod), defmod)<0) {
LM_ERR("unable to set cfg define for module: %s\n",
mod->exports.name);
goto error;
}
/* link module in the list */
mod->next=modules;
modules=mod;
return 0;
error:
if (mod)
pkg_free(mod);
return ret;
}
static inline int version_control(void *handle, char *path)
{
char **m_ver;
char **m_flags;
char* error;
m_ver=(char **)dlsym(handle, "module_version");
if ((error=(char *)dlerror())!=0) {
LM_ERR("no version info in module <%s>: %s\n", path, error);
return 0;
}
m_flags=(char **)dlsym(handle, "module_flags");
if ((error=(char *)dlerror())!=0) {
LM_ERR("no compile flags info in module <%s>: %s\n", path, error);
return 0;
}
if (!m_ver || !(*m_ver)) {
LM_ERR("no version in module <%s>\n", path );
return 0;
}
if (!m_flags || !(*m_flags)) {
LM_ERR("no compile flags in module <%s>\n", path );
return 0;
}
if (strcmp(SER_FULL_VERSION, *m_ver)==0){
if (strcmp(SER_COMPILE_FLAGS, *m_flags)==0)
return 1;
else {
LM_ERR("module compile flags mismatch for %s "
" \ncore: %s \nmodule: %s\n",
path, SER_COMPILE_FLAGS, *m_flags);
return 0;
}
}
LM_ERR("module version mismatch for %s; "
"core: %s; module: %s\n", path, SER_FULL_VERSION, *m_ver );
return 0;
}
/**
* \brief load a sr module
*
* tries to load the module specified by mod_path.
* If mod_path is 'modname' or 'modname.so' then
* \<MODS_DIR\>/\<modname\>.so will be tried and if this fails
* \<MODS_DIR\>/\<modname\>/\<modname\>.so
* If mod_path contain a '/' it is assumed to be the
* path to the module and tried first. If fails and mod_path is not
* absolute path (not starting with '/') then will try:
* \<MODS_DIR\>/mod_path
* @param mod_path path or module name
* @return 0 on success , <0 on error
*/
int load_module(char* mod_path)
{
void* handle;
char* error;
mod_register_function mr;
union module_exports_u* exp;
unsigned* mod_if_ver;
struct sr_module* t;
struct stat stat_buf;
str modname;
char* mdir;
char* nxt_mdir;
char* path;
int mdir_len;
int len;
int dlflags;
int new_dlflags;
int retries;
int path_type;
str expref;
char exbuf[64];
#ifndef RTLD_NOW
/* for openbsd */
#define RTLD_NOW DL_LAZY
#endif
path=mod_path;
path_type = 0;
modname.s = path;
modname.len = strlen(mod_path);
if(modname.len>3 && strcmp(modname.s+modname.len-3, ".so")==0) {
path_type = 1;
modname.len -= 3;
}
if (!strchr(path, '/'))
path_type |= 2;
if((path_type&2) || path[0] != '/') {
/* module name was given, we try to construct the path */
mdir=mods_dir; /* search path */
do{
nxt_mdir=strchr(mdir, ':');
if (nxt_mdir) mdir_len=(int)(nxt_mdir-mdir);
else mdir_len=strlen(mdir);
if(path_type&2) {
/* try path <MODS_DIR>/<modname>.so */
path = (char*)pkg_malloc(mdir_len + 1 /* "/" */ +
modname.len + 3 /* ".so" */ + 1);
if (path==0) goto error;
memcpy(path, mdir, mdir_len);
len = mdir_len;
if (len != 0 && path[len - 1] != '/'){
path[len]='/';
len++;
}
path[len]=0;
strcat(path, modname.s);
if(!(path_type&1))
strcat(path, ".so");
if (stat(path, &stat_buf) == -1) {
LM_DBG("module file not found <%s>\n", path);
pkg_free(path);
/* try path <MODS_DIR>/<modname>/<modname>.so */
path = (char*)pkg_malloc(
mdir_len + 1 /* "/" */ +
modname.len + 1 /* "/" */ +
modname.len + 3 /* ".so" */ + 1);
if (path==0) goto error;
memcpy(path, mdir, mdir_len);
len = mdir_len;
if (len != 0 && path[len - 1] != '/') {
path[len]='/';
len++;
}
path[len]=0;
strncat(path, modname.s, modname.len);
strcat(path, "/");
strcat(path, modname.s);
if(!(path_type&1))
strcat(path, ".so");
if (stat(path, &stat_buf) == -1) {
LM_DBG("module file not found <%s>\n", path);
pkg_free(path);
path=0;
}
}
} else {
/* try mod_path - S compat */
if(path==mod_path) {
if (stat(path, &stat_buf) == -1) {
LM_DBG("module file not found <%s>\n", path);
path=0;
}
}
if(path==0) {
/* try path <MODS_DIR>/mod_path - K compat */
path = (char*)pkg_malloc(mdir_len + 1 /* "/" */ +
strlen(mod_path) + 1);
if (path==0) goto error;
memcpy(path, mdir, mdir_len);
len = mdir_len;
if (len != 0 && path[len - 1] != '/'){
path[len]='/';
len++;
}
path[len]=0;
strcat(path, mod_path);
if (stat(path, &stat_buf) == -1) {
LM_DBG("module file not found <%s>\n", path);
pkg_free(path);
path=0;
}
}
}
mdir=nxt_mdir?nxt_mdir+1:0;
}while(path==0 && mdir);
if (path==0){
LM_ERR("could not find module <%.*s> in <%s>\n",
modname.len, modname.s, mods_dir);
goto error;
}
}
LM_DBG("trying to load <%s>\n", path);
retries=2;
dlflags=RTLD_NOW;
reload:
handle=dlopen(path, dlflags); /* resolve all symbols now */
if (handle==0){
LM_ERR("could not open module <%s>: %s\n", path, dlerror());
goto error;
}
for(t=modules;t; t=t->next){
if (t->handle==handle){
LM_WARN("attempting to load the same module twice (%s)\n", path);
goto skip;
}
}
/* version control */
if (!version_control(handle, path)) {
exit(-1);
}
mod_if_ver = (unsigned *)dlsym(handle, "module_interface_ver");
if ( (error =(char*)dlerror())!=0 ){
LM_ERR("no module interface version in module <%s>\n", path );
goto error1;
}
/* launch register */
mr = (mod_register_function)dlsym(handle, "mod_register");
if (((error =(char*)dlerror())==0) && mr) {
/* no error call it */
new_dlflags=dlflags;
if (mr(path, &new_dlflags, 0, 0)!=0) {
LM_ERR("%s: mod_register failed\n", path);
goto error1;
}
if (new_dlflags!=dlflags && new_dlflags!=0) {
/* we have to reload the module */
dlclose(handle);
dlflags=new_dlflags;
retries--;
if (retries>0) goto reload;
LM_ERR("%s: cannot agree on the dlflags\n", path);
goto error;
}
}
exp = (union module_exports_u*)dlsym(handle, "exports");
if(exp==NULL) {
/* 'exports' structure not found, look up for '_modulename_exports' */
mdir = strrchr(mod_path, '/');
if (!mdir) {
expref.s = mod_path;
} else {
expref.s = mdir+1;
}
expref.len = strlen(expref.s);
if(expref.len>3 && strcmp(expref.s+expref.len-3, ".so")==0)
expref.len -= 3;
snprintf(exbuf, 62, "_%.*s_exports", expref.len, expref.s);
exp = (union module_exports_u*)dlsym(handle, exbuf);
LM_DBG("looking up exports with name: %s\n", exbuf);
if ( (error =(char*)dlerror())!=0 ){
LM_ERR("%s\n", error);
goto error1;
}
}
/* hack to allow for kamailio style dlflags inside exports */
if (*mod_if_ver == 1) {
new_dlflags = exp->v1.dlflags;
if (new_dlflags!=dlflags && new_dlflags!=DEFAULT_DLFLAGS) {
/* we have to reload the module */
dlclose(handle);
DEBUG("%s: exports dlflags interface is deprecated and it will not"
" be supported in newer versions; consider using"
" mod_register() instead\n", path);
dlflags=new_dlflags;
retries--;
if (retries>0) goto reload;
LM_ERR("%s: cannot agree on the dlflags\n", path);
goto error;
}
}
if (register_module(*mod_if_ver, exp, path, handle)<0) goto error1;
return 0;
error1:
dlclose(handle);
error:
skip:
if (path && path!=mod_path)
pkg_free(path);
return -1;
}
/* searches the module list for function name in module mod and returns
* a pointer to the "name" function record union or 0 if not found
* sets also *mod_if_ver to the original module interface version.
* mod==0 is a wildcard matching all modules
* flags parameter is OR value of all flags that must match
*/
sr31_cmd_export_t* find_mod_export_record(char* mod, char* name,
int param_no, int flags,
unsigned* mod_if_ver)
{
struct sr_module* t;
sr31_cmd_export_t* cmd;
for(t=modules;t;t=t->next){
if (mod!=0 && (strcmp(t->exports.name, mod) !=0))
continue;
if (t->exports.cmds)
for(cmd=&t->exports.cmds[0]; cmd->name; cmd++) {
if((strcmp(name, cmd->name) == 0) &&
((cmd->param_no == param_no) ||
(cmd->param_no==VAR_PARAM_NO)) &&
((cmd->flags & flags) == flags)
){
LM_DBG("find_export_record: found <%s> in module %s [%s]\n",
name, t->exports.name, t->path);
*mod_if_ver=t->orig_mod_interface_ver;
return cmd;
}
}
}
LM_DBG("find_export_record: <%s> not found \n", name);
return 0;
}
/* searches the module list for function name and returns
* a pointer to the "name" function record union or 0 if not found
* sets also *mod_if_ver to the module interface version (needed to know
* which member of the union should be accessed v0 or v1)
* mod==0 is a wildcard matching all modules
* flags parameter is OR value of all flags that must match
*/
sr31_cmd_export_t* find_export_record(char* name,
int param_no, int flags,
unsigned* mod_if_ver)
{
return find_mod_export_record(0, name, param_no, flags, mod_if_ver);
}
cmd_function find_export(char* name, int param_no, int flags)
{
sr31_cmd_export_t* cmd;
unsigned mver;
cmd = find_export_record(name, param_no, flags, &mver);
return cmd?cmd->function:0;
}
rpc_export_t* find_rpc_export(char* name, int flags)
{
return rpc_lookup((char*)name, strlen(name));
}
/*
* searches the module list and returns pointer to "name" function in module
* "mod"
* 0 if not found
* flags parameter is OR value of all flags that must match
*/
cmd_function find_mod_export(char* mod, char* name, int param_no, int flags)
{
sr31_cmd_export_t* cmd;
unsigned mver;
cmd=find_mod_export_record(mod, name, param_no, flags, &mver);
if (cmd)
return cmd->function;
LM_DBG("<%s> in module <%s> not found\n", name, mod);
return 0;
}
struct sr_module* find_module_by_name(char* mod) {
struct sr_module* t;
for(t = modules; t; t = t->next) {
if (strcmp(mod, t->exports.name) == 0) {
return t;
}
}
LM_DBG("module <%s> not found\n", mod);
return 0;
}
/*!
* \brief Find a parameter with given type
* \param mod module
* \param name parameter name
* \param type_mask parameter mask
* \param param_type parameter type
* \return parameter address in memory, if there is no such parameter, NULL is returned
*/
void* find_param_export(struct sr_module* mod, char* name,
modparam_t type_mask, modparam_t *param_type)
{
param_export_t* param;
if (!mod)
return 0;
for(param = mod->exports.params ;param && param->name ; param++) {
if ((strcmp(name, param->name) == 0) &&
((param->type & PARAM_TYPE_MASK(type_mask)) != 0)) {
LM_DBG("found <%s> in module %s [%s]\n",
name, mod->exports.name, mod->path);
*param_type = param->type;
return param->param_pointer;
}
}
LM_DBG("parameter <%s> not found in module <%s>\n",
name, mod->exports.name);
return 0;
}
void destroy_modules()
{
struct sr_module* t, *foo;
_sr_destroy_modules_phase = 1;
/* call first destroy function from each module */
t=modules;
while(t) {
foo=t->next;
if (t->exports.destroy_f){
t->exports.destroy_f();
}
t=foo;
}
/* free module exports structures */
t=modules;
while(t) {
foo=t->next;
pkg_free(t);
t=foo;
}
modules=0;
if (mod_response_cbks){
pkg_free(mod_response_cbks);
mod_response_cbks=0;
}
}
#ifdef NO_REVERSE_INIT
/*
* Initialize all loaded modules, the initialization
* is done *AFTER* the configuration file is parsed
*/
int init_modules(void)
{
struct sr_module* t;
if(async_task_init()<0)
return -1;
for(t = modules; t; t = t->next) {
if (t->exports.init_f) {
if (t->exports.init_f() != 0) {
LM_ERR("Error while initializing module %s\n", t->exports.name);
return -1;
}
/* delay next module init, if configured */
if(unlikely(modinit_delay>0))
sleep_us(modinit_delay);
}
if (t->exports.response_f)
mod_response_cbk_no++;
}
mod_response_cbks=pkg_malloc(mod_response_cbk_no *
sizeof(response_function));
if (mod_response_cbks==0){
LM_ERR("memory allocation failure for %d response_f callbacks\n",
mod_response_cbk_no);
return -1;
}
for (t=modules, i=0; t && (i<mod_response_cbk_no); t=t->next) {
if (t->exports.response_f) {
mod_response_cbks[i]=t->exports.response_f;
i++;
}
}
return 0;
}
/*
* per-child initialization
*/
int init_child(int rank)
{
struct sr_module* t;
char* type;
switch(rank) {
case PROC_MAIN: type = "PROC_MAIN"; break;
case PROC_TIMER: type = "PROC_TIMER"; break;
case PROC_FIFO: type = "PROC_FIFO"; break;
case PROC_TCP_MAIN: type = "PROC_TCP_MAIN"; break;
default: type = "CHILD"; break;
}
LM_DBG("initializing %s with rank %d\n", type, rank);
if(async_task_child_init(rank)<0)
return -1;
for(t = modules; t; t = t->next) {
if (t->exports.init_child_f) {
if ((t->exports.init_child_f(rank)) < 0) {
LM_ERR("Initialization of child %d failed\n", rank);
return -1;
}
}
}
return 0;
}
#else
/* recursive module child initialization; (recursion is used to
* process the module linear list in the same order in
* which modules are loaded in config file
*/
static int init_mod_child( struct sr_module* m, int rank )
{
if (m) {
/* iterate through the list; if error occurs,
* propagate it up the stack
*/
if (init_mod_child(m->next, rank)!=0) return -1;
if (m->exports.init_child_f) {
LM_DBG("rank %d: %s\n", rank, m->exports.name);
if (m->exports.init_child_f(rank)<0) {
LM_ERR("Error while initializing module %s (%s)\n",
m->exports.name, m->path);
return -1;
} else {
/* module correctly initialized */
return 0;
}
}
/* no init function -- proceed with success */
return 0;
} else {
/* end of list */
return 0;
}
}
/*
* per-child initialization
*/
int init_child(int rank)
{
if(async_task_child_init(rank)<0)
return -1;
return init_mod_child(modules, rank);
}
/* recursive module initialization; (recursion is used to
* process the module linear list in the same order in
* which modules are loaded in config file
*/
static int init_mod( struct sr_module* m )
{
if (m) {
/* iterate through the list; if error occurs,
* propagate it up the stack
*/
if (init_mod(m->next)!=0) return -1;
if (m->exports.init_f) {
LM_DBG("%s\n", m->exports.name);
if (m->exports.init_f()!=0) {
LM_ERR("Error while initializing module %s (%s)\n",
m->exports.name, m->path);
return -1;
} else {
/* module correctly initialized */
return 0;
}
}
/* no init function -- proceed with success */
return 0;
} else {
/* end of list */
return 0;
}
}
/*
* Initialize all loaded modules, the initialization
* is done *AFTER* the configuration file is parsed
*/
int init_modules(void)
{
struct sr_module* t;
int i;
if(async_task_init()<0)
return -1;
i = init_mod(modules);
if(i!=0)
return i;
for(t = modules; t; t = t->next)
if (t->exports.response_f)
mod_response_cbk_no++;
mod_response_cbks=pkg_malloc(mod_response_cbk_no *
sizeof(response_function));
if (mod_response_cbks==0){
LM_ERR("memory allocation failure for %d response_f callbacks\n", mod_response_cbk_no);
return -1;
}
for (t=modules, i=0; t && (i<mod_response_cbk_no); t=t->next)
if (t->exports.response_f) {
mod_response_cbks[i]=t->exports.response_f;
i++;
}
return 0;
}
#endif
action_u_t *fixup_get_param(void **cur_param, int cur_param_no,
int required_param_no)
{
action_u_t *a;
/* cur_param points to a->u.string, get pointer to a */
a = (void*) ((char *)cur_param - offsetof(action_u_t, u.string));
return a + required_param_no - cur_param_no;
}
int fixup_get_param_count(void **cur_param, int cur_param_no)
{
action_u_t *a;
a = fixup_get_param(cur_param, cur_param_no, 0);
if (a)
return a->u.number;
else
return -1;
}
/** get a pointer to a parameter internal type.
* @param param
* @return pointer to the parameter internal type.
*/
action_param_type* fixup_get_param_ptype(void** param)
{
action_u_t* a;
a = (void*)((char*)param - offsetof(action_u_t, u.string));
return &a->type;
}
/** get a parameter internal type.
* @see fixup_get_param_ptype().
* @return paramter internal type.
*/
action_param_type fixup_get_param_type(void** param)
{
return *fixup_get_param_ptype(param);
}
/* fixes flag params (resolves possible named flags)
* use PARAM_USE_FUNC|PARAM_STRING as a param. type and create
* a wrapper function that does just:
* return fix_flag(type, val, "my_module", "my_param", &flag_var)
* see also param_func_t.
*/
int fix_flag( modparam_t type, void* val,
char* mod_name, char* param_name, int* flag)
{
int num;
int err;
int f, len;
char* s;
char *p;
if ((type & PARAM_STRING)==0){
LM_CRIT("%s: fix_flag(%s): bad parameter type\n",
mod_name, param_name);
return -1;
}
s=(char*)val;
len=strlen(s);
f=-1;
/* try to see if it's a number */
num = str2s(s, len, &err);
if (err != 0) {
/* see if it's in the name:<no> format */
p=strchr(s, ':');
if (p){
f= str2s(p+1, strlen(p+1), &err);
if (err!=0){
LM_ERR("%s: invalid %s format: \"%s\"",
mod_name, param_name, s);
return -1;
}
*p=0;
}
if ((num=get_flag_no(s, len))<0){
/* not declared yet, declare it */
num=register_flag(s, f);
}
if (num<0){
LM_ERR("%s: bad %s %s\n", mod_name, param_name, s);
return -1;
} else if ((f>0) && (num!=f)){
LM_ERR("%s: flag %s already defined"
" as %d (and not %d), using %s:%d\n",
mod_name, s, num, f, s, num);
}
}
*flag=num;
return 0;
}
/*
* Common function parameter fixups
*/
/** Generic parameter fixup function.
* Creates a fparam_t structure.
* @param type contains allowed parameter types
* @param param is the parameter that will be fixed-up
*
* @return
* 0 on success,
* 1 if the param doesn't match the specified type
* <0 on failure
*/
int fix_param(int type, void** param)
{
fparam_t* p;
str name, s;
int num;
int err;
p = (fparam_t*)pkg_malloc(sizeof(fparam_t));
if (!p) {
LM_ERR("No memory left\n");
return E_OUT_OF_MEM;
}
memset(p, 0, sizeof(fparam_t));
p->orig = *param;
switch(type) {
case FPARAM_UNSPEC:
LM_ERR("Invalid type value\n");
goto error;
case FPARAM_STRING:
p->v.asciiz = *param;
/* no break */
case FPARAM_STR:
p->v.str.s = (char*)*param;
p->v.str.len = strlen(p->v.str.s);
p->fixed = &p->v;
break;
case FPARAM_INT:
s.s = (char*)*param;
s.len = strlen(s.s);
err = str2sint(&s, &num);
if (err == 0) {
p->v.i = (int)num;
} else {
/* Not a number */
pkg_free(p);
return 1;
}
p->fixed = (void*)(long)num;
break;
case FPARAM_REGEX:
if ((p->v.regex = pkg_malloc(sizeof(regex_t))) == 0) {
LM_ERR("No memory left\n");
goto error;
}
if (regcomp(p->v.regex, *param,
REG_EXTENDED|REG_ICASE|REG_NEWLINE)) {
pkg_free(p->v.regex);
p->v.regex=0;
/* not a valid regex */
goto no_match;
}
p->fixed = p->v.regex;
break;
case FPARAM_AVP:
name.s = (char*)*param;
name.len = strlen(name.s);
trim(&name);
if (!name.len || name.s[0] != '$') {
/* Not an AVP identifier */
goto no_match;
}
name.s++;
name.len--;
if (parse_avp_ident(&name, &p->v.avp) < 0) {
/* invalid avp identifier (=> no match) */
goto no_match;
}
p->fixed = &p->v;
break;
case FPARAM_SELECT:
name.s = (char*)*param;
name.len = strlen(name.s);
trim(&name);
if (!name.len || name.s[0] != '@') {
/* Not a select identifier */
goto no_match;
}
if (parse_select(&name.s, &p->v.select) < 0) {
LM_ERR("Error while parsing select identifier\n");
goto error;
}
p->fixed = &p->v;
break;
case FPARAM_SUBST:
s.s = *param;
s.len = strlen(s.s);
p->v.subst = subst_parser(&s);
if (!p->v.subst) {
LM_ERR("Error while parsing regex substitution\n");
goto error;
}
p->fixed = &p->v;
break;
case FPARAM_PVS:
name.s = (char*)*param;
name.len = strlen(name.s);
trim(&name);
if (!name.len || name.s[0] != '$'){
/* not a pvs identifier */
goto no_match;
}
p->v.pvs=pkg_malloc(sizeof(pv_spec_t));
if (p->v.pvs==0){
LM_ERR("out of memory while parsing pv_spec_t\n");
goto error;
}
if (pv_parse_spec2(&name, p->v.pvs, 1)==0){
/* not a valid pvs identifier (but it might be an avp) */
pkg_free(p->v.pvs);
p->v.pvs=0;
goto no_match;
}
p->fixed = p->v.pvs;
break;
case FPARAM_PVE:
name.s = (char*)*param;
name.len = strlen(name.s);
if (pv_parse_format(&name, &p->v.pve)<0){
LM_ERR("bad PVE format: \"%.*s\"\n", name.len, name.s);
goto error;
}
p->fixed = &p->v;
break;
}
p->type = type;
*param = (void*)p;
return 0;
no_match:
pkg_free(p);
return 1;
error:
pkg_free(p);
return E_UNSPEC;
}
/** fparam_t free function.
* Frees the "content" of a fparam, but not the fparam itself.
* Note: it doesn't free fp->orig!
* Assumes pkg_malloc'ed content.
* @param fp - fparam to be freed
*
*/
void fparam_free_contents(fparam_t* fp)
{
if (fp==0)
return;
switch(fp->type) {
case FPARAM_UNSPEC:
case FPARAM_STRING: /* asciiz string, not str */
case FPARAM_INT:
case FPARAM_STR:
/* nothing to do */
break;
case FPARAM_REGEX:
if (fp->v.regex){
regfree(fp->v.regex);
pkg_free(fp->v.regex);
fp->v.regex=0;
}
break;
case FPARAM_AVP:
free_avp_name(&fp->v.avp.flags, &fp->v.avp.name);
break;
case FPARAM_SELECT:
if (fp->v.select){
free_select(fp->v.select);
fp->v.select=0;
}
break;
case FPARAM_SUBST:
if (fp->v.subst){
subst_expr_free(fp->v.subst);
fp->v.subst=0;
}
break;
case FPARAM_PVS:
if (fp->v.pvs){
pv_spec_free(fp->v.pvs);
fp->v.pvs=0;
}
break;
case FPARAM_PVE:
if (fp->v.pve){
pv_elem_free_all(fp->v.pve);
fp->v.pve=0;
}
break;
}
}
/**
* @brief Generic free fixup type function for a fixed fparam
*
* Generic free fixup type function for a fixed fparam. It will free whatever
* was allocated during the initial fparam fixup and restore the original param
* value.
* @param param freed parameters
*/
void fparam_free_restore(void** param)
{
fparam_t *fp;
void *orig;
fp = *param;
orig = fp->orig;
fp->orig = 0;
fparam_free_contents(fp);
pkg_free(fp);
*param = orig;
}
/** fix a param to one of the given types (mask).
*
* @param types - bitmap of the allowed types (e.g. FPARAM_INT|FPARAM_STR)
* @param param - value/result
* @return - 0 on success, -1 on error, 1 if param doesn't
* match any of the types
*/
int fix_param_types(int types, void** param)
{
int ret;
int t;
if (fixup_get_param_type(param) == STRING_RVE_ST &&
(types & (FPARAM_INT|FPARAM_STR|FPARAM_STRING))) {
/* if called with a RVE already converted to string =>
* don't try AVP, PVAR or SELECT (to avoid double
* deref., e.g.: $foo="$bar"; f($foo) ) */
types &= ~ (FPARAM_AVP|FPARAM_PVS|FPARAM_SELECT|FPARAM_PVE);
}
for (t=types & ~(types-1); types; types&=(types-1), t=types & ~(types-1)){
if ((ret=fix_param(t, param))<=0) return ret;
}
return E_UNSPEC;
}
/*
* Fixup variable string, the parameter can be
* AVP, SELECT, or ordinary string. AVP and select
* identifiers will be resolved to their values during
* runtime
*
* The parameter value will be converted to fparam structure
* This function returns -1 on an error
*/
int fixup_var_str_12(void** param, int param_no)
{
int ret;
if (fixup_get_param_type(param) != STRING_RVE_ST) {
/* if called with a RVE already converted to string =>
* don't try AVP, PVAR or SELECT (to avoid double
* deref., e.g.: $foo="$bar"; f($foo) ) */
if ((ret = fix_param(FPARAM_PVS, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_AVP, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_SELECT, param)) <= 0) return ret;
}
if ((ret = fix_param(FPARAM_STR, param)) <= 0) return ret;
LM_ERR("Error while fixing parameter, PV, AVP, SELECT, and str conversions"
" failed\n");
return -1;
}
/* Same as fixup_var_str_12 but applies to the 1st parameter only */
int fixup_var_str_1(void** param, int param_no)
{
if (param_no == 1) return fixup_var_str_12(param, param_no);
else return 0;
}
/* Same as fixup_var_str_12 but applies to the 2nd parameter only */
int fixup_var_str_2(void** param, int param_no)
{
if (param_no == 2) return fixup_var_str_12(param, param_no);
else return 0;
}
/** fixup variable-pve-only-string.
* The parameter can be a PVE (pv based format string)
* or string.
* non-static PVEs identifiers will be resolved to
* their values during runtime.
* The parameter value will be converted to fparam structure
* @param param - double pointer to param, as for normal fixup functions.
* @param param_no - parameter number, ignored.
* @return -1 on an error, 0 on success.
*/
int fixup_var_pve_12(void** param, int param_no)
{
int ret;
fparam_t* fp;
if (fixup_get_param_type(param) != STRING_RVE_ST) {
/* if called with a RVE already converted to string =>
* don't try PVE again (to avoid double
* deref., e.g.: $foo="$bar"; f($foo) ) */
if ((ret = fix_param(FPARAM_PVE, param)) <= 0) {
if (ret < 0)
return ret;
/* check if it resolved to a dynamic or "static" PVE.
* If the resulting PVE is static (normal string), discard
* it and use the normal string fixup (faster at runtime) */
fp = (fparam_t*)*param;
if (fp->v.pve->spec == 0 || fp->v.pve->spec->getf == 0)
fparam_free_restore(param); /* fallback to STR below */
else
return ret; /* dynamic PVE => return */
}
}
if ((ret = fix_param(FPARAM_STR, param)) <= 0) return ret;
LM_ERR("Error while fixing parameter - PVE or str conversions failed\n");
return -1;
}
/** fixup variable-pve-string.
* The parameter can be a PVAR, AVP, SELECT, PVE (pv based format string)
* or string.
* PVAR, AVP and select and non-static PVEs identifiers will be resolved to
* their values during runtime.
* The parameter value will be converted to fparam structure
* @param param - double pointer to param, as for normal fixup functions.
* @param param_no - parameter number, ignored.
* @return -1 on an error, 0 on success.
*/
int fixup_var_pve_str_12(void** param, int param_no)
{
int ret;
fparam_t* fp;
if (fixup_get_param_type(param) != STRING_RVE_ST) {
/* if called with a RVE already converted to string =>
* don't try AVP, PVAR, SELECT or PVE again (to avoid double
* deref., e.g.: $foo="$bar"; f($foo) ) */
if ((ret = fix_param(FPARAM_PVS, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_AVP, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_SELECT, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_PVE, param)) <= 0) {
if (ret < 0)
return ret;
/* check if it resolved to a dynamic or "static" PVE.
* If the resulting PVE is static (normal string), discard
* it and use the normal string fixup (faster at runtime) */
fp = (fparam_t*)*param;
if (fp->v.pve->spec == 0 || fp->v.pve->spec->getf == 0)
fparam_free_restore(param); /* fallback to STR below */
else
return ret; /* dynamic PVE => return */
}
}
if ((ret = fix_param(FPARAM_STR, param)) <= 0) return ret;
LM_ERR("Error while fixing parameter, PV, AVP, SELECT, and str conversions"
" failed\n");
return -1;
}
/* Same as fixup_var_pve_str_12 but applies to the 1st parameter only */
int fixup_var_pve_str_1(void** param, int param_no)
{
if (param_no == 1) return fixup_var_pve_str_12(param, param_no);
else return 0;
}
/* Same as fixup_var_pve_str_12 but applies to the 2nd parameter only */
int fixup_var_pve_str_2(void** param, int param_no)
{
if (param_no == 2) return fixup_var_pve_str_12(param, param_no);
else return 0;
}
/*
* Fixup variable integer, the parameter can be
* AVP, SELECT, or ordinary integer. AVP and select
* identifiers will be resolved to their values and
* converted to int if necessary during runtime
*
* The parameter value will be converted to fparam structure
* This function returns -1 on an error
*/
int fixup_var_int_12(void** param, int param_no)
{
int ret;
if (fixup_get_param_type(param) != STRING_RVE_ST) {
/* if called with a RVE already converted to string =>
* don't try AVP, PVAR or SELECT (to avoid double
* deref., e.g.: $foo="$bar"; f($foo) ) */
if ((ret = fix_param(FPARAM_PVS, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_AVP, param)) <= 0) return ret;
if ((ret = fix_param(FPARAM_SELECT, param)) <= 0) return ret;
}
if ((ret = fix_param(FPARAM_INT, param)) <= 0) return ret;
LM_ERR("Error while fixing parameter, PV, AVP, SELECT, and int conversions"
" failed\n");
return -1;
}
/* Same as fixup_var_int_12 but applies to the 1st parameter only */
int fixup_var_int_1(void** param, int param_no)
{
if (param_no == 1) return fixup_var_int_12(param, param_no);
else return 0;
}
/* Same as fixup_var_int_12 but applies to the 2nd parameter only */
int fixup_var_int_2(void** param, int param_no)
{
if (param_no == 2) return fixup_var_int_12(param, param_no);
else return 0;
}
/*
* The parameter must be a regular expression which must compile, the
* parameter will be converted to compiled regex
*/
int fixup_regex_12(void** param, int param_no)
{
int ret;
if ((ret = fix_param(FPARAM_REGEX, param)) <= 0) return ret;
LM_ERR("Error while compiling regex in function parameter\n");
return -1;
}
/* Same as fixup_regex_12 but applies to the 1st parameter only */
int fixup_regex_1(void** param, int param_no)
{
if (param_no == 1) return fixup_regex_12(param, param_no);
else return 0;
}
/* Same as fixup_regex_12 but applies to the 2nd parameter only */
int fixup_regex_2(void** param, int param_no)
{
if (param_no == 2) return fixup_regex_12(param, param_no);
else return 0;
}
/*
* The string parameter will be converted to integer
*/
int fixup_int_12(void** param, int param_no)
{
int ret;
if ((ret = fix_param(FPARAM_INT, param)) <= 0) return ret;
LM_ERR("Cannot function parameter to integer\n");
return -1;
}
/* Same as fixup_int_12 but applies to the 1st parameter only */
int fixup_int_1(void** param, int param_no)
{
if (param_no == 1) return fixup_int_12(param, param_no);
else return 0;
}
/* Same as fixup_int_12 but applies to the 2nd parameter only */
int fixup_int_2(void** param, int param_no)
{
if (param_no == 2) return fixup_int_12(param, param_no);
else return 0;
}
/*
* Parse the parameter as static string, do not resolve
* AVPs or selects, convert the parameter to str structure
*/
int fixup_str_12(void** param, int param_no)
{
int ret;
if ((ret = fix_param(FPARAM_STR, param)) <= 0) return ret;
LM_ERR("Cannot function parameter to string\n");
return -1;
}
/* Same as fixup_str_12 but applies to the 1st parameter only */
int fixup_str_1(void** param, int param_no)
{
if (param_no == 1) return fixup_str_12(param, param_no);
else return 0;
}
/* Same as fixup_str_12 but applies to the 2nd parameter only */
int fixup_str_2(void** param, int param_no)
{
if (param_no == 2) return fixup_str_12(param, param_no);
else return 0;
}
/** Get the function parameter value as string.
* @return 0 - Success
* -1 - Cannot get value
*/
int get_str_fparam(str* dst, struct sip_msg* msg, fparam_t* param)
{
int_str val;
int ret;
avp_t* avp;
pv_value_t pv_val;
switch(param->type) {
case FPARAM_REGEX:
case FPARAM_UNSPEC:
case FPARAM_INT:
return -1;
case FPARAM_STRING:
dst->s = param->v.asciiz;
dst->len = strlen(param->v.asciiz);
break;
case FPARAM_STR:
*dst = param->v.str;
break;
case FPARAM_AVP:
avp = search_first_avp(param->v.avp.flags, param->v.avp.name,
&val, 0);
if (unlikely(!avp)) {
LM_DBG("Could not find AVP from function parameter '%s'\n",
param->orig);
return -1;
}
if (likely(avp->flags & AVP_VAL_STR)) {
*dst = val.s;
} else {
/* The caller does not know of what type the AVP will be so
* convert int AVPs into string here
*/
dst->s = int2str(val.n, &dst->len);
}
break;
case FPARAM_SELECT:
ret = run_select(dst, param->v.select, msg);
if (unlikely(ret < 0 || ret > 0)) return -1;
break;
case FPARAM_PVS:
if (likely((pv_get_spec_value(msg, param->v.pvs, &pv_val)==0) &&
((pv_val.flags&(PV_VAL_NULL|PV_VAL_STR))==PV_VAL_STR))){
*dst=pv_val.rs;
}else{
LM_ERR("Could not convert PV to str\n");
return -1;
}
break;
case FPARAM_PVE:
dst->s=pv_get_buffer();
dst->len=pv_get_buffer_size();
if (unlikely(pv_printf(msg, param->v.pve, dst->s, &dst->len)!=0)){
LM_ERR("Could not convert the PV-formated string to str\n");
dst->len=0;
return -1;
};
break;
}
return 0;
}
/** Get the function parameter value as integer.
* @return 0 - Success
* -1 - Cannot get value
*/
int get_int_fparam(int* dst, struct sip_msg* msg, fparam_t* param)
{
int_str val;
int ret;
avp_t* avp;
str tmp;
pv_value_t pv_val;
switch(param->type) {
case FPARAM_INT:
*dst = param->v.i;
return 0;
case FPARAM_REGEX:
case FPARAM_UNSPEC:
case FPARAM_STRING:
case FPARAM_STR:
LM_ERR("Unsupported param type for int value: %d\n", param->type);
return -1;
case FPARAM_AVP:
avp = search_first_avp(param->v.avp.flags, param->v.avp.name,
&val, 0);
if (unlikely(!avp)) {
LM_DBG("Could not find AVP from function parameter '%s'\n",
param->orig);
return -1;
}
if (avp->flags & AVP_VAL_STR) {
if (str2int(&val.s, (unsigned int*)dst) < 0) {
LM_ERR("Could not convert AVP string value to int\n");
return -1;
}
} else {
*dst = val.n;
}
break;
case FPARAM_SELECT:
ret = run_select(&tmp, param->v.select, msg);
if (unlikely(ret < 0 || ret > 0)) return -1;
if (unlikely(str2int(&tmp, (unsigned int*)dst) < 0)) {
LM_ERR("Could not convert select result to int\n");
return -1;
}
break;
case FPARAM_PVS:
if (likely((pv_get_spec_value(msg, param->v.pvs, &pv_val)==0) &&
((pv_val.flags&(PV_VAL_NULL|PV_VAL_INT))==PV_VAL_INT))){
*dst=pv_val.ri;
}else{
LM_ERR("Could not convert PV to int\n");
return -1;
}
break;
case FPARAM_PVE:
LM_ERR("Unsupported param type for int value: %d\n", param->type);
return -1;
default:
LM_ERR("Unexpected param type: %d\n", param->type);
return -1;
}
return 0;
}
/** Get the function parameter value as string or/and integer (if possible).
* @return 0 - Success
* -1 - Cannot get value
*/
int get_is_fparam(int* i_dst, str* s_dst, struct sip_msg* msg, fparam_t* param, unsigned int *flags)
{
int_str val;
int ret;
avp_t* avp;
str tmp;
pv_value_t pv_val;
*flags = 0;
switch(param->type) {
case FPARAM_INT:
*i_dst = param->v.i;
*flags |= PARAM_INT;
return 0;
case FPARAM_REGEX:
case FPARAM_UNSPEC:
case FPARAM_STRING:
s_dst->s = param->v.asciiz;
s_dst->len = strlen(param->v.asciiz);
*flags |= PARAM_STR;
break;
case FPARAM_STR:
*s_dst = param->v.str;
*flags |= PARAM_STR;
break;
case FPARAM_AVP:
avp = search_first_avp(param->v.avp.flags, param->v.avp.name,
&val, 0);
if (unlikely(!avp)) {
LM_DBG("Could not find AVP from function parameter '%s'\n",
param->orig);
return -1;
}
if (avp->flags & AVP_VAL_STR) {
*s_dst = val.s;
*flags |= PARAM_STR;
if (str2int(&val.s, (unsigned int*)i_dst) < 0) {
LM_ERR("Could not convert AVP string value to int\n");
return -1;
}
} else {
*i_dst = val.n;
*flags |= PARAM_INT;
}
break;
case FPARAM_SELECT:
ret = run_select(&tmp, param->v.select, msg);
if (unlikely(ret < 0 || ret > 0)) return -1;
if (unlikely(str2int(&tmp, (unsigned int*)i_dst) < 0)) {
LM_ERR("Could not convert select result to int\n");
return -1;
}
*flags |= PARAM_INT;
break;
case FPARAM_PVS:
if (likely(pv_get_spec_value(msg, param->v.pvs, &pv_val)==0)) {
if ((pv_val.flags&(PV_VAL_NULL|PV_VAL_INT))==PV_VAL_INT){
*i_dst=pv_val.ri;
*flags |= PARAM_INT;
}
if ((pv_val.flags&(PV_VAL_NULL|PV_VAL_STR))==PV_VAL_STR){
*s_dst=pv_val.rs;
*flags |= PARAM_STR;
}
}else{
LM_ERR("Could not get PV\n");
return -1;
}
break;
case FPARAM_PVE:
s_dst->s=pv_get_buffer();
s_dst->len=pv_get_buffer_size();
if (unlikely(pv_printf(msg, param->v.pve, s_dst->s, &s_dst->len)!=0)){
LM_ERR("Could not convert the PV-formated string to str\n");
s_dst->len=0;
return -1;
}
*flags |= PARAM_STR;
break;
}
/* Let's convert to int, if possible */
if (!(*flags & PARAM_INT) && (*flags & PARAM_STR) && str2sint(s_dst, i_dst) == 0)
*flags |= PARAM_INT;
if (!*flags) return -1;
return 0;
}
/**
* Retrieve the compiled RegExp.
* @return: 0 for success, negative on error.
*/
int get_regex_fparam(regex_t *dst, struct sip_msg* msg, fparam_t* param)
{
switch (param->type) {
case FPARAM_REGEX:
*dst = *param->v.regex;
return 0;
default:
LM_ERR("unexpected parameter type (%d), instead of regexp.\n",
param->type);
}
return -1;
}
/** generic free fixup function for "pure" fparam type fixups.
* @param param - double pointer to param, as for normal fixup functions.
* @param param_no - parameter number, ignored.
* @return 0 on success (always).
*/
int fixup_free_fparam_all(void** param, int param_no)
{
fparam_free_restore(param);
return 0;
}
/** generic free fixup function for "pure" first parameter fparam type fixups.
* @param param - double pointer to param, as for normal fixup functions.
* @param param_no - parameter number: the function will work only for
* param_no == 1 (first parameter).
* @return 0 on success (always).
*/
int fixup_free_fparam_1(void** param, int param_no)
{
if (param_no == 1)
fparam_free_restore(param);
return 0;
}
/** generic free fixup function for "pure" 2nd parameter fparam type fixups.
* @param param - double pointer to param, as for normal fixup functions.
* @param param_no - parameter number: the function will work only for
* param_no == 2 (2nd parameter).
* @return 0 on success (always).
*/
int fixup_free_fparam_2(void** param, int param_no)
{
if (param_no == 2)
fparam_free_restore(param);
return 0;
}
/** returns true if a fixup is a fparam_t* one.
* Used to automatically detect "pure" fparam fixups that can be used with non
* contant RVEs.
* @param f - function pointer
* @return 1 for fparam fixups, 0 for others.
*/
int is_fparam_rve_fixup(fixup_function f)
{
if (f == fixup_var_str_12 ||
f == fixup_var_str_1 ||
f == fixup_var_str_2 ||
f == fixup_var_pve_str_12 ||
f == fixup_var_pve_str_1 ||
f == fixup_var_pve_str_2 ||
f == fixup_var_int_12 ||
f == fixup_var_int_1 ||
f == fixup_var_int_2 ||
f == fixup_int_12 ||
f == fixup_int_1 ||
f == fixup_int_2 ||
f == fixup_str_12 ||
f == fixup_str_1 ||
f == fixup_str_2 ||
f == fixup_regex_12 ||
f == fixup_regex_1 ||
f == fixup_regex_2
)
return 1;
return 0;
}
/**
* @brief returns the corresponding fixup_free* for various known fixup types
*
* Returns the corresponding fixup_free* for various known fixup types.
* Used to automatically fill in free_fixup* functions.
* @param f fixup function pointer
* @return free fixup function pointer on success, 0 on failure (unknown
* fixup or no free fixup function).
*/
free_fixup_function get_fixup_free(fixup_function f)
{
free_fixup_function ret;
/* "pure" fparam, all parameters */
if (f == fixup_var_str_12 ||
f == fixup_var_pve_str_12 ||
f == fixup_var_int_12 ||
f == fixup_int_12 ||
f == fixup_str_12 ||
f == fixup_regex_12)
return fixup_free_fparam_all;
/* "pure" fparam, 1st parameter */
if (f == fixup_var_str_1 ||
f == fixup_var_pve_str_1 ||
f == fixup_var_int_1 ||
f == fixup_int_1 ||
f == fixup_str_1 ||
f == fixup_regex_1)
return fixup_free_fparam_1;
/* "pure" fparam, 2nd parameters */
if (f == fixup_var_str_2 ||
f == fixup_var_pve_str_2 ||
f == fixup_var_int_2 ||
f == fixup_int_2 ||
f == fixup_str_2 ||
f == fixup_regex_2)
return fixup_free_fparam_2;
/* mod_fix.h kamailio style fixups */
if ((ret = mod_fix_get_fixup_free(f)) != 0)
return ret;
/* unknown */
return 0;
}