You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kamailio/mem/ll_malloc.c

1099 lines
29 KiB

/* $Id$
*
* shared memory, multi-process safe, pool based, mostly lockless version of
* f_malloc
*
* Copyright (C) 2007 iptelorg GmbH
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* History:
* --------
* created by andrei
* 2003-07-06 added fm_realloc (andrei)
* 2004-07-19 fragments book keeping code and support for 64 bits
* memory blocks (64 bits machine & size >=2^32)
* GET_HASH s/</<=/ (avoids waste of 1 hash cell) (andrei)
* 2004-11-10 support for > 4Gb mem., switched to long (andrei)
* 2005-03-02 added fm_info() (andrei)
* 2005-12-12 fixed realloc shrink real_used accounting (andrei)
* fixed initial size (andrei)
* 2006-02-03 fixed realloc out of mem. free bug (andrei)
* 2006-04-07 s/DBG/MDBG (andrei)
* 2007-02-23 added fm_available() (andrei)
* 2007-06-09 forked from the fm_maloc code (andrei)
* 2007-06-11 forked from the sfm_maloc code (andrei)
*/
#ifdef LL_MALLOC
#include <string.h>
#include <stdlib.h>
#include "ll_malloc.h"
#include "../dprint.h"
#include "../globals.h"
#include "memdbg.h"
#include "../cfg/cfg.h" /* memlog */
#define MAX_POOL_FRAGS 10000 /* max fragments per pool hash bucket */
#define MIN_POOL_FRAGS 10 /* min fragments per pool hash bucket */
/*useful macros*/
#define FRAG_NEXT(f) \
((struct sfm_frag*)((char*)(f)+sizeof(struct sfm_frag)+(f)->size ))
/* SF_ROUNDTO= 2^k so the following works */
#define ROUNDTO_MASK (~((unsigned long)SF_ROUNDTO-1))
#define ROUNDUP(s) (((s)+(SF_ROUNDTO-1))&ROUNDTO_MASK)
#define ROUNDDOWN(s) ((s)&ROUNDTO_MASK)
#define FRAG_OVERHEAD (sizeof(struct sfm_frag))
#define INIT_OVERHEAD \
(ROUNDUP(sizeof(struct sfm_block))+sizeof(struct sfm_frag))
/* finds hash if s <=SF_MALLOC_OPTIMIZE */
#define GET_SMALL_HASH(s) (unsigned long)(s)/SF_ROUNDTO
/* finds hash if s > SF_MALLOC_OPTIMIZE */
#define GET_BIG_HASH(s) \
(SF_MALLOC_OPTIMIZE/SF_ROUNDTO+big_hash_idx((s))-SF_MALLOC_OPTIMIZE_FACTOR+1)
/* finds the hash value for s, s=SF_ROUNDTO multiple*/
#define GET_HASH(s) ( ((unsigned long)(s)<=SF_MALLOC_OPTIMIZE)?\
GET_SMALL_HASH(s): GET_BIG_HASH(s) )
#define UN_HASH_SMALL(h) ((unsigned long)(h)*SF_ROUNDTO)
#define UN_HASH_BIG(h) (1UL<<((unsigned long)(h)-SF_MALLOC_OPTIMIZE/SF_ROUNDTO+\
SF_MALLOC_OPTIMIZE_FACTOR-1))
#define UN_HASH(h) ( ((unsigned long)(h)<=(SF_MALLOC_OPTIMIZE/SF_ROUNDTO))?\
UN_HASH_SMALL(h): UN_HASH_BIG(h) )
#define BITMAP_BITS (sizeof(((struct sfm_block*)0)->bitmap)*8)
#define BITMAP_BLOCK_SIZE ((SF_MALLOC_OPTIMIZE/SF_ROUNDTO)/ BITMAP_BITS)
/* only for "small" hashes (up to HASH(SF_MALLOC_OPTIMIZE) */
#define HASH_BIT_POS(h) (((unsigned long)(h))/BITMAP_BLOCK_SIZE)
#define HASH_TO_BITMAP(h) (1UL<<HASH_BIT_POS(h))
#define BIT_TO_HASH(b) ((b)*BITMAP_BLOCK_SIZE)
/* mark/test used/unused frags */
#define FRAG_MARK_USED(f)
#define FRAG_CLEAR_USED(f)
#define FRAG_WAS_USED(f) (1)
/* other frag related defines:
* MEM_COALESCE_FRAGS
* MEM_FRAG_AVOIDANCE
*/
#define MEM_FRAG_AVOIDANCE
#define SFM_REALLOC_REMALLOC
/* computes hash number for big buckets*/
inline static unsigned long big_hash_idx(unsigned long s)
{
unsigned long idx;
/* s is rounded => s = k*2^n (SF_ROUNDTO=2^n)
* index= i such that 2^i > s >= 2^(i-1)
*
* => index = number of the first non null bit in s*/
idx=sizeof(long)*8-1;
for (; !(s&(1UL<<(sizeof(long)*8-1))) ; s<<=1, idx--);
return idx;
}
#ifdef DBG_F_MALLOC
#define ST_CHECK_PATTERN 0xf0f0f0f0
#define END_CHECK_PATTERN1 0xc0c0c0c0
#define END_CHECK_PATTERN2 0xabcdefed
#endif
#ifdef SFM_ONE_LOCK
#define SFM_MAIN_HASH_LOCK(qm, hash) lock_get(&(qm)->lock)
#define SFM_MAIN_HASH_UNLOCK(qm, hash) lock_release(&(qm)->lock)
#define SFM_POOL_LOCK(p, hash) lock_get(&(p)->lock)
#define SFM_POOL_UNLOCK(p, hash) lock_release(&(p)->lock)
#warn "degraded performance, only one lock"
#elif defined SFM_LOCK_PER_BUCKET
#define SFM_MAIN_HASH_LOCK(qm, hash) \
lock_get(&(qm)->free_hash[(hash)].lock)
#define SFM_MAIN_HASH_UNLOCK(qm, hash) \
lock_release(&(qm)->free_hash[(hash)].lock)
#define SFM_POOL_LOCK(p, hash) lock_get(&(p)->pool_hash[(hash)].lock)
#define SFM_POOL_UNLOCK(p, hash) lock_release(&(p)->pool_hash[(hash)].lock)
#else
#error no locks defined
#endif /* SFM_ONE_LOCK/SFM_LOCK_PER_BUCKET */
#define SFM_BIG_GET_AND_SPLIT_LOCK(qm) lock_get(&(qm)->get_and_split)
#define SFM_BIG_GET_AND_SPLIT_UNLOCK(qm) lock_release(&(qm)->get_and_split)
static unsigned long sfm_max_hash=0; /* maximum hash value (no point in
searching further) */
static unsigned long pool_id=(unsigned long)-1;
/* call for each child */
int sfm_pool_reset()
{
pool_id=(unsigned long)-1;
return 0;
}
#define sfm_fix_pool_id(qm) \
do{ \
if (unlikely(pool_id>=SFM_POOLS_NO)) \
pool_id=((unsigned)atomic_add(&(qm)->crt_id, 1))%SFM_POOLS_NO; \
}while(0)
static inline void frag_push(struct sfm_frag** head, struct sfm_frag* frag)
{
register struct sfm_frag* old;
register struct sfm_frag* crt;
crt=(void*)atomic_get_long(head);
do{
frag->u.nxt_free=crt;
old=crt;
membar_write_atomic_op();
crt=(void*)atomic_cmpxchg_long((void*)head, (long)old, (long)frag);
}while(crt!=old);
}
static inline struct sfm_frag* frag_pop(struct sfm_frag** head)
{
register struct sfm_frag* old;
register struct sfm_frag* crt;
register struct sfm_frag* nxt;
crt=(void*)atomic_get_long(head);
do{
/* if circular list, test not needed */
nxt=crt?crt->u.nxt_free:0;
old=crt;
membar_read_atomic_op();
crt=(void*)atomic_cmpxchg_long((void*)head, (long)old, (long)nxt);
}while(crt!=old);
return crt;
}
static inline void sfm_pool_insert (struct sfm_pool* pool, int hash,
struct sfm_frag* frag)
{
unsigned long hash_bit;
frag_push(&pool->pool_hash[hash].first, frag);
atomic_inc_long((long*)&pool->pool_hash[hash].no);
/* set it only if not already set (avoids an expensive
* cache trashing atomic write op) */
hash_bit=HASH_TO_BITMAP(hash);
if (!(atomic_get_long((long*)&pool->bitmap) & hash_bit))
atomic_or_long((long*)&pool->bitmap, hash_bit);
}
/* returns 1 if it's ok to add a fragm. to pool p_id @ hash, 0 otherwise */
static inline int sfm_check_pool(struct sfm_block* qm, unsigned long p_id,
int hash, int split)
{
/* TODO: come up with something better
* if fragment is some split/rest from an allocation, that is
* >= requested size, accept it, else
* look at misses and current fragments and decide based on them */
return (p_id<SFM_POOLS_NO) && (split ||
( (qm->pool[p_id].pool_hash[hash].no < MIN_POOL_FRAGS) ||
((qm->pool[p_id].pool_hash[hash].misses >
qm->pool[p_id].pool_hash[hash].no) &&
(qm->pool[p_id].pool_hash[hash].no<MAX_POOL_FRAGS) ) ) );
}
/* choose on which pool to add a free'd packet
* return - pool idx or -1 if it should be added to main*/
static inline unsigned long sfm_choose_pool(struct sfm_block* qm,
struct sfm_frag* frag,
int hash, int split)
{
/* check original pool first */
if (sfm_check_pool(qm, frag->id, hash, split))
return frag->id;
else{
/* check if our pool is properly set */
sfm_fix_pool_id(qm);
/* check if my pool needs some frags */
if ((pool_id!=frag->id) && (sfm_check_pool(qm, pool_id, hash, 0))){
frag->id=pool_id;
return pool_id;
}
}
/* else add it back to main */
frag->id=(unsigned long)(-1);
return frag->id;
}
static inline void sfm_insert_free(struct sfm_block* qm, struct sfm_frag* frag,
int split)
{
struct sfm_frag** f;
unsigned long p_id;
int hash;
unsigned long hash_bit;
if (likely(frag->size<=SF_POOL_MAX_SIZE)){
hash=GET_SMALL_HASH(frag->size);
if (unlikely((p_id=sfm_choose_pool(qm, frag, hash, split))==
(unsigned long)-1)){
/* add it back to the "main" hash */
frag->id=(unsigned long)(-1); /* main hash marker */
/*insert it here*/
frag_push(&(qm->free_hash[hash].first), frag);
atomic_inc_long((long*)&qm->free_hash[hash].no);
/* set it only if not already set (avoids an expensive
* cache trashing atomic write op) */
hash_bit=HASH_TO_BITMAP(hash);
if (!(atomic_get_long((long*)&qm->bitmap) & hash_bit))
atomic_or_long((long*)&qm->bitmap, hash_bit);
}else{
/* add it to one of the pools pool */
sfm_pool_insert(&qm->pool[p_id], hash, frag);
}
}else{
hash=GET_BIG_HASH(frag->size);
SFM_MAIN_HASH_LOCK(qm, hash);
f=&(qm->free_hash[hash].first);
for(; *f; f=&((*f)->u.nxt_free))
if (frag->size <= (*f)->size) break;
frag->id=(unsigned long)(-1); /* main hash marker */
/*insert it here*/
frag->u.nxt_free=*f;
*f=frag;
qm->free_hash[hash].no++;
/* inc. big hash free size ? */
SFM_MAIN_HASH_UNLOCK(qm, hash);
}
}
/* size should be already rounded-up */
static inline
#ifdef DBG_F_MALLOC
void sfm_split_frag(struct sfm_block* qm, struct sfm_frag* frag,
unsigned long size,
const char* file, const char* func, unsigned int line)
#else
void sfm_split_frag(struct sfm_block* qm, struct sfm_frag* frag,
unsigned long size)
#endif
{
unsigned long rest;
struct sfm_frag* n;
int bigger_rest;
rest=frag->size-size;
#ifdef MEM_FRAG_AVOIDANCE
if ((rest> (FRAG_OVERHEAD+SF_MALLOC_OPTIMIZE))||
(rest>=(FRAG_OVERHEAD+size))){ /* the residue fragm. is big enough*/
bigger_rest=1;
#else
if (rest>(FRAG_OVERHEAD+SF_MIN_FRAG_SIZE)){
bigger_rest=rest>=(size+FRAG_OVERHEAD);
#endif
frag->size=size;
/*split the fragment*/
n=FRAG_NEXT(frag);
n->size=rest-FRAG_OVERHEAD;
n->id=pool_id;
FRAG_CLEAR_USED(n); /* never used */
#ifdef DBG_F_MALLOC
/* frag created by malloc, mark it*/
n->file=file;
n->func="frag. from sfm_malloc";
n->line=line;
n->check=ST_CHECK_PATTERN;
#endif
/* reinsert n in free list*/
sfm_insert_free(qm, n, bigger_rest);
}else{
/* we cannot split this fragment any more => alloc all of it*/
}
}
/* init malloc and return a sfm_block*/
struct sfm_block* sfm_malloc_init(char* address, unsigned long size)
{
char* start;
char* end;
struct sfm_block* qm;
unsigned long init_overhead;
int r;
#ifdef SFM_LOCK_PER_BUCKET
int i;
#endif
/* make address and size multiple of 8*/
start=(char*)ROUNDUP((unsigned long) address);
DBG("sfm_malloc_init: SF_OPTIMIZE=%lu, /SF_ROUNDTO=%lu\n",
SF_MALLOC_OPTIMIZE, SF_MALLOC_OPTIMIZE/SF_ROUNDTO);
DBG("sfm_malloc_init: SF_HASH_SIZE=%lu, sfm_block size=%lu\n",
SF_HASH_SIZE, (long)sizeof(struct sfm_block));
DBG("sfm_malloc_init(%p, %lu), start=%p\n", address, size, start);
if (size<start-address) return 0;
size-=(start-address);
if (size <(SF_MIN_FRAG_SIZE+FRAG_OVERHEAD)) return 0;
size=ROUNDDOWN(size);
init_overhead=INIT_OVERHEAD;
if (size < init_overhead)
{
/* not enough mem to create our control structures !!!*/
return 0;
}
end=start+size;
qm=(struct sfm_block*)start;
memset(qm, 0, sizeof(struct sfm_block));
qm->size=size;
size-=init_overhead;
qm->first_frag=(struct sfm_frag*)(start+ROUNDUP(sizeof(struct sfm_block)));
qm->last_frag=(struct sfm_frag*)(end-sizeof(struct sfm_frag));
/* init initial fragment*/
qm->first_frag->size=size;
qm->first_frag->id=(unsigned long)-1; /* not in a pool */
qm->last_frag->size=0;
#ifdef DBG_F_MALLOC
qm->first_frag->check=ST_CHECK_PATTERN;
qm->last_frag->check=END_CHECK_PATTERN1;
#endif
/* link initial fragment into the free list*/
sfm_insert_free(qm, qm->first_frag, 0);
sfm_max_hash=GET_HASH(size);
/* init locks */
if (lock_init(&qm->get_and_split)==0)
goto error;
#ifdef SFM_ONE_LOCK
if (lock_init(&qm->lock)==0){
lock_destroy(&qm->get_and_split);
goto error;
}
for (r=0; r<SFM_POOLS_NO; r++){
if (lock_init(&qm->pool[r].lock)==0){
for (;r>0; r--) lock_destroy(&qm->pool[r-1].lock);
lock_destroy(&qm->lock);
lock_destroy(&qm->get_and_split);
goto error;
}
}
#elif defined(SFM_LOCK_PER_BUCKET)
for (r=0; r<SF_HASH_SIZE; r++)
if (lock_init(&qm->free_hash[r].lock)==0){
for(;r>0; r--) lock_destroy(&qm->free_hash[r-1].lock);
lock_destroy(&qm->get_and_split);
goto error;
}
for (i=0; i<SFM_POOLS_NO; i++){
for (r=0; r<SF_HASH_POOL_SIZE; r++)
if (lock_init(&qm->pool[i].pool_hash[r].lock)==0){
for(;r>0; r--) lock_destroy(&qm->pool[i].poo_hash[r].lock);
for(; i>0; i--){
for (r=0; r<SF_HASH_POOL_SIZE; r++)
lock_destroy(&qm->pool[i].pool_hash[r].lock);
}
for (r=0; r<SF_HASH_SIZE; r++)
lock_destroy(&qm->free_hash[r].lock);
lock_destroy(&qm->get_and_split);
goto error;
}
}
#endif
qm->is_init=1;
return qm;
error:
return 0;
}
/* cleanup */
void sfm_malloc_destroy(struct sfm_block* qm)
{
int r, i;
/* destroy all the locks */
if (!qm || !qm->is_init)
return; /* nothing to do */
lock_destroy(&qm->get_and_split);
#ifdef SFM_ONE_LOCK
lock_destroy(&qm->lock);
for (r=0; r<SFM_POOLS_NO; r++){
lock_destroy(&qm->pool[r].lock);
}
#elif defined(SFM_LOCK_PER_BUCKET)
for (r=0; r<SF_HASH_SIZE; r++)
lock_destroy(&qm->free_hash[r].lock);
for (i=0; i<SFM_POOLS_NO; i++){
for (r=0; r<SF_HASH_POOL_SIZE; r++)
lock_destroy(&qm->pool[i].pool_hash[r].lock);
}
#endif
qm->is_init=0;
}
/* returns next set bit in bitmap, starts at b
* if b is set, returns b
* if not found returns BITMAP_BITS */
static inline unsigned long _next_set_bit(unsigned long b,
unsigned long* bitmap)
{
for (; !((1UL<<b)& *bitmap) && b<BITMAP_BITS; b++);
return b;
}
/* returns start of block b and sets *end
* (handles also the "rest" block at the end ) */
static inline unsigned long _hash_range(unsigned long b, unsigned long* end)
{
unsigned long s;
if ((unlikely(b>=BITMAP_BITS))){
s=BIT_TO_HASH(BITMAP_BITS);
*end=SF_HASH_POOL_SIZE; /* last, possible rest block */
}else{
s=BIT_TO_HASH(b);
*end=s+BITMAP_BLOCK_SIZE;
}
return s;
}
#ifdef DBG_F_MALLOC
static inline struct sfm_frag* pool_get_frag(struct sfm_block* qm,
struct sfm_pool* pool, int hash, unisgned long size,
const char* file, const char* func, unsigned int line)
#else
static inline struct sfm_frag* pool_get_frag(struct sfm_block* qm,
struct sfm_pool* pool,
int hash, unsigned long size)
#endif
{
int r;
int next_block;
struct sfm_frag* volatile* f;
struct sfm_frag* frag;
unsigned long b;
unsigned long eob;
/* special case for r=hash */
r=hash;
f=&pool->pool_hash[r].first;
/* detach it from the free list */
if ((frag=frag_pop((struct sfm_frag**)f))==0)
goto not_found;
found:
atomic_dec_long((long*)&pool->pool_hash[r].no);
frag->u.nxt_free=0; /* mark it as 'taken' */
frag->id=pool_id;
#ifdef DBG_F_MALLOC
sfm_split_frag(qm, frag, size, file, func, line);
#else
sfm_split_frag(qm, frag, size);
#endif
if (&qm->pool[pool_id]==pool)
atomic_inc_long((long*)&pool->hits);
return frag;
not_found:
atomic_inc_long((long*)&pool->pool_hash[r].misses);
r++;
b=HASH_BIT_POS(r);
while(r<SF_HASH_POOL_SIZE){
b=_next_set_bit(b, &pool->bitmap);
next_block=_hash_range(b, &eob);
r=(r<next_block)?next_block:r;
for (; r<eob; r++){
f=&pool->pool_hash[r].first;
if ((frag=frag_pop((struct sfm_frag**)f))!=0)
goto found;
atomic_inc_long((long*)&pool->pool_hash[r].misses);
}
b++;
}
atomic_inc_long((long*)&pool->missed);
return 0;
}
#ifdef DBG_F_MALLOC
static inline struct sfm_frag* main_get_frag(struct sfm_block* qm, int hash,
unsigned long size,
const char* file, const char* func, unsigned int line)
#else
static inline struct sfm_frag* main_get_frag(struct sfm_block* qm, int hash,
unsigned long size)
#endif
{
int r;
int next_block;
struct sfm_frag* volatile* f;
struct sfm_frag* frag;
unsigned long b;
unsigned long eob;
r=hash;
b=HASH_BIT_POS(r);
while(r<=SF_MALLOC_OPTIMIZE/SF_ROUNDTO){
b=_next_set_bit(b, &qm->bitmap);
next_block=_hash_range(b, &eob);
r=(r<next_block)?next_block:r;
for (; r<eob; r++){
f=&qm->free_hash[r].first;
if ((frag=frag_pop((struct sfm_frag**)f))!=0){
atomic_dec_long((long*)&qm->free_hash[r].no);
frag->u.nxt_free=0; /* mark it as 'taken' */
frag->id=pool_id;
#ifdef DBG_F_MALLOC
sfm_split_frag(qm, frag, size, file, func, line);
#else
sfm_split_frag(qm, frag, size);
#endif
return frag;
}
}
b++;
}
/* big fragments */
SFM_BIG_GET_AND_SPLIT_LOCK(qm);
for (; r<= sfm_max_hash ; r++){
f=&qm->free_hash[r].first;
if (*f){
SFM_MAIN_HASH_LOCK(qm, r);
if (unlikely((*f)==0)){
/* not found */
SFM_MAIN_HASH_UNLOCK(qm, r);
continue;
}
for(;(*f); f=&((*f)->u.nxt_free))
if ((*f)->size>=size){
/* found, detach it from the free list*/
frag=*f;
*f=frag->u.nxt_free;
frag->u.nxt_free=0; /* mark it as 'taken' */
qm->free_hash[r].no--;
SFM_MAIN_HASH_UNLOCK(qm, r);
frag->id=pool_id;
#ifdef DBG_F_MALLOC
sfm_split_frag(qm, frag, size, file, func, line);
#else
sfm_split_frag(qm, frag, size);
#endif
SFM_BIG_GET_AND_SPLIT_UNLOCK(qm);
return frag;
};
SFM_MAIN_HASH_UNLOCK(qm, r);
/* try in a bigger bucket */
}
}
SFM_BIG_GET_AND_SPLIT_UNLOCK(qm);
return 0;
}
#ifdef DBG_F_MALLOC
void* sfm_malloc(struct sfm_block* qm, unsigned long size,
const char* file, const char* func, unsigned int line)
#else
void* sfm_malloc(struct sfm_block* qm, unsigned long size)
#endif
{
struct sfm_frag* frag;
int hash;
unsigned int i;
#ifdef DBG_F_MALLOC
MDBG("sfm_malloc(%p, %lu) called from %s: %s(%d)\n", qm, size, file, func,
line);
#endif
/*size must be a multiple of 8*/
size=ROUNDUP(size);
/* if (size>(qm->size-qm->real_used)) return 0; */
/* check if our pool id is set */
sfm_fix_pool_id(qm);
/*search for a suitable free frag*/
if (likely(size<=SF_POOL_MAX_SIZE)){
hash=GET_SMALL_HASH(size);
/* try first in our pool */
#ifdef DBG_F_MALLOC
if (likely((frag=pool_get_frag(qm, &qm->pool[pool_id], hash, size,
file, func, line))!=0))
goto found;
/* try in the "main" free hash, go through all the hash */
if (likely((frag=main_get_frag(qm, hash, size, file, func, line))!=0))
goto found;
/* really low mem , try in other pools */
for (i=(pool_id+1); i< (pool_id+SFM_POOLS_NO); i++){
if ((frag=pool_get_frag(qm, &qm->pool[i%SFM_POOLS_NO], hash, size,
file, func, line))!=0)
goto found;
}
#else
if (likely((frag=pool_get_frag(qm, &qm->pool[pool_id], hash, size))
!=0 ))
goto found;
/* try in the "main" free hash, go through all the hash */
if (likely((frag=main_get_frag(qm, hash, size))!=0))
goto found;
/* really low mem , try in other pools */
for (i=(pool_id+1); i< (pool_id+SFM_POOLS_NO); i++){
if ((frag=pool_get_frag(qm, &qm->pool[i%SFM_POOLS_NO], hash, size))
!=0 )
goto found;
}
#endif
/* not found, bad! */
return 0;
}else{
hash=GET_BIG_HASH(size);
#ifdef DBG_F_MALLOC
if ((frag=main_get_frag(qm, hash, size, file, func, line))==0)
return 0; /* not found, bad! */
#else
if ((frag=main_get_frag(qm, hash, size))==0)
return 0; /* not found, bad! */
#endif
}
found:
/* we found it!*/
#ifdef DBG_F_MALLOC
frag->file=file;
frag->func=func;
frag->line=line;
frag->check=ST_CHECK_PATTERN;
MDBG("sfm_malloc(%p, %lu) returns address %p \n", qm, size,
(char*)frag+sizeof(struct sfm_frag));
#endif
FRAG_MARK_USED(frag); /* mark it as used */
return (char*)frag+sizeof(struct sfm_frag);
}
#ifdef DBG_F_MALLOC
void sfm_free(struct sfm_block* qm, void* p, const char* file,
const char* func, unsigned int line)
#else
void sfm_free(struct sfm_block* qm, void* p)
#endif
{
struct sfm_frag* f;
#ifdef DBG_F_MALLOC
MDBG("sfm_free(%p, %p), called from %s: %s(%d)\n", qm, p, file, func,
line);
if (p>(void*)qm->last_frag || p<(void*)qm->first_frag){
LOG(L_CRIT, "BUG: sfm_free: bad pointer %p (out of memory block!) - "
"aborting\n", p);
abort();
}
#endif
if (unlikely(p==0)) {
LOG(L_WARN, "WARNING: sfm_free: free(0) called\n");
return;
}
f=(struct sfm_frag*) ((char*)p-sizeof(struct sfm_frag));
#ifdef DBG_F_MALLOC
MDBG("sfm_free: freeing block alloc'ed from %s: %s(%ld)\n",
f->file, f->func, f->line);
#endif
#ifdef DBG_F_MALLOC
f->file=file;
f->func=func;
f->line=line;
#endif
sfm_insert_free(qm, f, 0);
}
#ifdef DBG_F_MALLOC
void* sfm_realloc(struct sfm_block* qm, void* p, unsigned long size,
const char* file, const char* func, unsigned int line)
#else
void* sfm_realloc(struct sfm_block* qm, void* p, unsigned long size)
#endif
{
struct sfm_frag *f;
unsigned long orig_size;
void *ptr;
#ifndef SFM_REALLOC_REMALLOC
struct sfm_frag *n;
struct sfm_frag **pf;
unsigned long diff;
unsigned long p_id;
int hash;
unsigned long n_size;
struct sfm_pool * pool;
#endif
#ifdef DBG_F_MALLOC
MDBG("sfm_realloc(%p, %p, %lu) called from %s: %s(%d)\n", qm, p, size,
file, func, line);
if ((p)&&(p>(void*)qm->last_frag || p<(void*)qm->first_frag)){
LOG(L_CRIT, "BUG: sfm_free: bad pointer %p (out of memory block!) - "
"aborting\n", p);
abort();
}
#endif
if (size==0) {
if (p)
#ifdef DBG_F_MALLOC
sfm_free(qm, p, file, func, line);
#else
sfm_free(qm, p);
#endif
return 0;
}
if (p==0)
#ifdef DBG_F_MALLOC
return sfm_malloc(qm, size, file, func, line);
#else
return sfm_malloc(qm, size);
#endif
f=(struct sfm_frag*) ((char*)p-sizeof(struct sfm_frag));
#ifdef DBG_F_MALLOC
MDBG("sfm_realloc: realloc'ing frag %p alloc'ed from %s: %s(%ld)\n",
f, f->file, f->func, f->line);
#endif
size=ROUNDUP(size);
orig_size=f->size;
if (f->size > size){
/* shrink */
#ifdef DBG_F_MALLOC
MDBG("sfm_realloc: shrinking from %lu to %lu\n", f->size, size);
sfm_split_frag(qm, f, size, file, "frag. from sfm_realloc", line);
#else
sfm_split_frag(qm, f, size);
#endif
}else if (f->size<size){
/* grow */
#ifdef DBG_F_MALLOC
MDBG("sfm_realloc: growing from %lu to %lu\n", f->size, size);
#endif
#ifndef SFM_REALLOC_REMALLOC
/* should set a magic value in list head and in push/pop if magic value =>
* lock and wait */
#error LL_MALLOC realloc not finished yet
diff=size-f->size;
n=FRAG_NEXT(f);
if (((char*)n < (char*)qm->last_frag) &&
(n->u.nxt_free)&&((n->size+FRAG_OVERHEAD)>=diff)){
/* join */
/* detach n from the free list */
try_again:
p_id=n->id;
n_size=n->size;
if ((unlikely(p_id >=SFM_POOLS_NO))){
hash=GET_HASH(n_size);
SFM_MAIN_HASH_LOCK(qm, hash);
if (unlikely((n->u.nxt_free==0) ||
((n->size+FRAG_OVERHEAD)<diff))){
SFM_MAIN_HASH_UNLOCK(qm, hash);
goto not_found;
}
if (unlikely((n->id!=p_id) || (n->size!=n_size))){
/* fragment still free, but changed, either
* moved to another pool or has a diff. size */
SFM_MAIN_HASH_UNLOCK(qm, hash);
goto try_again;
}
pf=&(qm->free_hash[hash].first);
/* find it */
for(;(*pf)&&(*pf!=n); pf=&((*pf)->u.nxt_free));/*FIXME slow */
if (*pf==0){
SFM_MAIN_HASH_UNLOCK(qm, hash);
/* not found, bad! */
LOG(L_WARN, "WARNING: sfm_realloc: could not find %p in "
"free " "list (hash=%d)\n", n, hash);
/* somebody is in the process of changing it ? */
goto not_found;
}
/* detach */
*pf=n->u.nxt_free;
n->u.nxt_free=0; /* mark it immediately as detached */
qm->free_hash[hash].no--;
SFM_MAIN_HASH_UNLOCK(qm, hash);
/* join */
f->size+=n->size+FRAG_OVERHEAD;
/* split it if necessary */
if (f->size > size){
#ifdef DBG_F_MALLOC
sfm_split_frag(qm, f, size, file, "fragm. from "
"sfm_realloc", line);
#else
sfm_split_frag(qm, f, size);
#endif
}
}else{ /* p_id < SFM_POOLS_NO (=> in a pool )*/
hash=GET_SMALL_HASH(n_size);
pool=&qm->pool[p_id];
SFM_POOL_LOCK(pool, hash);
if (unlikely((n->u.nxt_free==0) ||
((n->size+FRAG_OVERHEAD)<diff))){
SFM_POOL_UNLOCK(pool, hash);
goto not_found;
}
if (unlikely((n->id!=p_id) || (n->size!=n_size))){
/* fragment still free, but changed, either
* moved to another pool or has a diff. size */
SFM_POOL_UNLOCK(pool, hash);
goto try_again;
}
pf=&(pool->pool_hash[hash].first);
/* find it */
for(;(*pf)&&(*pf!=n); pf=&((*pf)->u.nxt_free));/*FIXME slow */
if (*pf==0){
SFM_POOL_UNLOCK(pool, hash);
/* not found, bad! */
LOG(L_WARN, "WARNING: sfm_realloc: could not find %p in "
"free " "list (hash=%d)\n", n, hash);
/* somebody is in the process of changing it ? */
goto not_found;
}
/* detach */
*pf=n->u.nxt_free;
n->u.nxt_free=0; /* mark it immediately as detached */
pool->pool_hash[hash].no--;
SFM_POOL_UNLOCK(pool, hash);
/* join */
f->size+=n->size+FRAG_OVERHEAD;
/* split it if necessary */
if (f->size > size){
#ifdef DBG_F_MALLOC
sfm_split_frag(qm, f, size, file, "fragm. from "
"sfm_realloc", line);
#else
sfm_split_frag(qm, f, size);
#endif
}
}
}else{
not_found:
/* could not join => realloc */
#else/* SFM_REALLOC_REMALLOC */
{
#endif /* SFM_REALLOC_REMALLOC */
#ifdef DBG_F_MALLOC
ptr=sfm_malloc(qm, size, file, func, line);
#else
ptr=sfm_malloc(qm, size);
#endif
if (ptr){
/* copy, need by libssl */
memcpy(ptr, p, orig_size);
#ifdef DBG_F_MALLOC
sfm_free(qm, p, file, func, line);
#else
sfm_free(qm, p);
#endif
}
p=ptr;
}
}else{
/* do nothing */
#ifdef DBG_F_MALLOC
MDBG("sfm_realloc: doing nothing, same size: %lu - %lu\n",
f->size, size);
#endif
}
#ifdef DBG_F_MALLOC
MDBG("sfm_realloc: returning %p\n", p);
#endif
return p;
}
void sfm_status(struct sfm_block* qm)
{
struct sfm_frag* f;
int i,j;
int h;
int unused;
unsigned long size;
int k;
int memlog;
#warning "ll_status doesn't work (might crash if used)"
memlog=cfg_get(core, core_cfg, memlog);
LOG(memlog, "sfm_status (%p):\n", qm);
if (!qm) return;
LOG(memlog, " heap size= %ld\n", qm->size);
LOG(memlog, "dumping free list:\n");
for(h=0,i=0,size=0;h<=sfm_max_hash;h++){
SFM_MAIN_HASH_LOCK(qm, h);
unused=0;
for (f=qm->free_hash[h].first,j=0; f;
size+=f->size,f=f->u.nxt_free,i++,j++){
if (!FRAG_WAS_USED(f)){
unused++;
#ifdef DBG_F_MALLOC
LOG(memlog, "unused fragm.: hash = %3d, fragment %p,"
" address %p size %lu, created from %s: %s(%ld)\n",
h, f, (char*)f+sizeof(struct sfm_frag), f->size,
f->file, f->func, f->line);
#endif
};
}
if (j) LOG(memlog, "hash = %3d fragments no.: %5d, unused: %5d\n\t\t"
" bucket size: %9lu - %9lu (first %9lu)\n",
h, j, unused, UN_HASH(h),
((h<=SF_MALLOC_OPTIMIZE/SF_ROUNDTO)?1:2)* UN_HASH(h),
qm->free_hash[h].first->size
);
if (j!=qm->free_hash[h].no){
LOG(L_CRIT, "BUG: sfm_status: different free frag. count: %d!=%ld"
" for hash %3d\n", j, qm->free_hash[h].no, h);
}
SFM_MAIN_HASH_UNLOCK(qm, h);
}
for (k=0; k<SFM_POOLS_NO; k++){
for(h=0;h<SF_HASH_POOL_SIZE;h++){
SFM_POOL_LOCK(&qm->pool[k], h);
unused=0;
for (f=qm->pool[k].pool_hash[h].first,j=0; f;
size+=f->size,f=f->u.nxt_free,i++,j++){
if (!FRAG_WAS_USED(f)){
unused++;
#ifdef DBG_F_MALLOC
LOG(memlog, "[%2d] unused fragm.: hash = %3d, fragment %p,"
" address %p size %lu, created from %s: "
"%s(%ld)\n", k
h, f, (char*)f+sizeof(struct sfm_frag),
f->size, f->file, f->func, f->line);
#endif
};
}
if (j) LOG(memlog, "[%2d] hash = %3d fragments no.: %5d, unused: "
"%5d\n\t\t bucket size: %9lu - %9lu "
"(first %9lu)\n",
k, h, j, unused, UN_HASH(h),
((h<=SF_MALLOC_OPTIMIZE/SF_ROUNDTO)?1:2) *
UN_HASH(h),
qm->pool[k].pool_hash[h].first->size
);
if (j!=qm->pool[k].pool_hash[h].no){
LOG(L_CRIT, "BUG: sfm_status: [%d] different free frag."
" count: %d!=%ld for hash %3d\n",
k, j, qm->pool[k].pool_hash[h].no, h);
}
SFM_POOL_UNLOCK(&qm->pool[k], h);
}
}
LOG(memlog, "TOTAL: %6d free fragments = %6lu free bytes\n", i, size);
LOG(memlog, "-----------------------------\n");
}
/* fills a malloc info structure with info about the block
* if a parameter is not supported, it will be filled with 0 */
void sfm_info(struct sfm_block* qm, struct mem_info* info)
{
int r, k;
unsigned long total_frags;
struct sfm_frag* f;
memset(info,0, sizeof(*info));
total_frags=0;
info->total_size=qm->size;
info->min_frag=SF_MIN_FRAG_SIZE;
/* we'll have to compute it all */
for (r=0; r<=SF_MALLOC_OPTIMIZE/SF_ROUNDTO; r++){
info->free+=qm->free_hash[r].no*UN_HASH(r);
total_frags+=qm->free_hash[r].no;
}
for(;r<=sfm_max_hash; r++){
total_frags+=qm->free_hash[r].no;
SFM_MAIN_HASH_LOCK(qm, r);
for(f=qm->free_hash[r].first;f;f=f->u.nxt_free){
info->free+=f->size;
}
SFM_MAIN_HASH_UNLOCK(qm, r);
}
for (k=0; k<SFM_POOLS_NO; k++){
for (r=0; r<SF_HASH_POOL_SIZE; r++){
info->free+=qm->pool[k].pool_hash[r].no*UN_HASH(r);
total_frags+=qm->pool[k].pool_hash[r].no;
}
}
info->real_used=info->total_size-info->free;
info->used=info->real_used-total_frags*FRAG_OVERHEAD-INIT_OVERHEAD
-FRAG_OVERHEAD;
info->max_used=0; /* we don't really know */
info->total_frags=total_frags;
}
/* returns how much free memory is available
* on error (not compiled with bookkeeping code) returns (unsigned long)(-1) */
unsigned long sfm_available(struct sfm_block* qm)
{
/* we don't know how much free memory we have and it's to expensive
* to compute it */
return ((unsigned long)-1);
}
#endif