mirror of https://github.com/asterisk/asterisk
				
				
				
			
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							277 lines
						
					
					
						
							7.5 KiB
						
					
					
				
			
		
		
	
	
							277 lines
						
					
					
						
							7.5 KiB
						
					
					
				| 
 | |
|    /******************************************************************
 | |
| 
 | |
|        iLBC Speech Coder ANSI-C Source Code
 | |
| 
 | |
|        lsf.c
 | |
| 
 | |
|        Copyright (C) The Internet Society (2004).
 | |
|        All Rights Reserved.
 | |
| 
 | |
|    ******************************************************************/
 | |
| 
 | |
|    #include <string.h>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|    #include <math.h>
 | |
| 
 | |
|    #include "iLBC_define.h"
 | |
| 
 | |
|    /*----------------------------------------------------------------*
 | |
|     *  conversion from lpc coefficients to lsf coefficients
 | |
|     *---------------------------------------------------------------*/
 | |
| 
 | |
|    void a2lsf(
 | |
|        float *freq,/* (o) lsf coefficients */
 | |
|        float *a    /* (i) lpc coefficients */
 | |
|    ){
 | |
|        float steps[LSF_NUMBER_OF_STEPS] =
 | |
|            {(float)0.00635, (float)0.003175, (float)0.0015875,
 | |
|            (float)0.00079375};
 | |
|        float step;
 | |
|        int step_idx;
 | |
|        int lsp_index;
 | |
|        float p[LPC_HALFORDER];
 | |
|        float q[LPC_HALFORDER];
 | |
|        float p_pre[LPC_HALFORDER];
 | |
|        float q_pre[LPC_HALFORDER];
 | |
|        float old_p, old_q, *old;
 | |
|        float *pq_coef;
 | |
|        float omega, old_omega;
 | |
|        int i;
 | |
|        float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;
 | |
| 
 | |
|        for (i=0; i<LPC_HALFORDER; i++) {
 | |
|            p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);
 | |
|            q[i] = a[LPC_FILTERORDER - i] - a[i + 1];
 | |
|        }
 | |
| 
 | |
|        p_pre[0] = (float)-1.0 - p[0];
 | |
|        p_pre[1] = - p_pre[0] - p[1];
 | |
|        p_pre[2] = - p_pre[1] - p[2];
 | |
|        p_pre[3] = - p_pre[2] - p[3];
 | |
|        p_pre[4] = - p_pre[3] - p[4];
 | |
|        p_pre[4] = p_pre[4] / 2;
 | |
| 
 | |
|        q_pre[0] = (float)1.0 - q[0];
 | |
|        q_pre[1] = q_pre[0] - q[1];
 | |
|        q_pre[2] = q_pre[1] - q[2];
 | |
|        q_pre[3] = q_pre[2] - q[3];
 | |
|        q_pre[4] = q_pre[3] - q[4];
 | |
|        q_pre[4] = q_pre[4] / 2;
 | |
| 
 | |
|        omega = 0.0;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|        old_omega = 0.0;
 | |
| 
 | |
|        old_p = FLOAT_MAX;
 | |
|        old_q = FLOAT_MAX;
 | |
| 
 | |
|        /* Here we loop through lsp_index to find all the
 | |
|           LPC_FILTERORDER roots for omega. */
 | |
| 
 | |
|        for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) {
 | |
| 
 | |
|            /* Depending on lsp_index being even or odd, we
 | |
|            alternatively solve the roots for the two LSP equations. */
 | |
| 
 | |
| 
 | |
|            if ((lsp_index & 0x1) == 0) {
 | |
|                pq_coef = p_pre;
 | |
|                old = &old_p;
 | |
|            } else {
 | |
|                pq_coef = q_pre;
 | |
|                old = &old_q;
 | |
|            }
 | |
| 
 | |
|            /* Start with low resolution grid */
 | |
| 
 | |
|            for (step_idx = 0, step = steps[step_idx];
 | |
|                step_idx < LSF_NUMBER_OF_STEPS;){
 | |
| 
 | |
|                /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
 | |
|                pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */
 | |
| 
 | |
|                hlp = (float)cos(omega * TWO_PI);
 | |
|                hlp1 = (float)2.0 * hlp + pq_coef[0];
 | |
|                hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +
 | |
|                    pq_coef[1];
 | |
|                hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];
 | |
|                hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];
 | |
|                hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];
 | |
| 
 | |
| 
 | |
|                if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){
 | |
| 
 | |
|                    if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){
 | |
| 
 | |
|                        if (fabs(hlp5) >= fabs(*old)) {
 | |
|                            freq[lsp_index] = omega - step;
 | |
|                        } else {
 | |
|                            freq[lsp_index] = omega;
 | |
|                        }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|                        if ((*old) >= 0.0){
 | |
|                            *old = (float)-1.0 * FLOAT_MAX;
 | |
|                        } else {
 | |
|                            *old = FLOAT_MAX;
 | |
|                        }
 | |
| 
 | |
|                        omega = old_omega;
 | |
|                        step_idx = 0;
 | |
| 
 | |
|                        step_idx = LSF_NUMBER_OF_STEPS;
 | |
|                    } else {
 | |
| 
 | |
|                        if (step_idx == 0) {
 | |
|                            old_omega = omega;
 | |
|                        }
 | |
| 
 | |
|                        step_idx++;
 | |
|                        omega -= steps[step_idx];
 | |
| 
 | |
|                        /* Go back one grid step */
 | |
| 
 | |
|                        step = steps[step_idx];
 | |
|                    }
 | |
|                } else {
 | |
| 
 | |
|                /* increment omega until they are of different sign,
 | |
|                and we know there is at least one root between omega
 | |
|                and old_omega */
 | |
|                    *old = hlp5;
 | |
|                    omega += step;
 | |
|                }
 | |
|            }
 | |
|        }
 | |
| 
 | |
|        for (i = 0; i<LPC_FILTERORDER; i++) {
 | |
|            freq[i] = freq[i] * TWO_PI;
 | |
|        }
 | |
|    }
 | |
| 
 | |
|    /*----------------------------------------------------------------*
 | |
|     *  conversion from lsf coefficients to lpc coefficients
 | |
|     *---------------------------------------------------------------*/
 | |
| 
 | |
|    void lsf2a(
 | |
|        float *a_coef,  /* (o) lpc coefficients */
 | |
|        float *freq     /* (i) lsf coefficients */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|    ){
 | |
|        int i, j;
 | |
|        float hlp;
 | |
|        float p[LPC_HALFORDER], q[LPC_HALFORDER];
 | |
|        float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER],
 | |
|            a2[LPC_HALFORDER];
 | |
|        float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER],
 | |
|            b2[LPC_HALFORDER];
 | |
| 
 | |
|        for (i=0; i<LPC_FILTERORDER; i++) {
 | |
|            freq[i] = freq[i] * PI2;
 | |
|        }
 | |
| 
 | |
|        /* Check input for ill-conditioned cases.  This part is not
 | |
|        found in the TIA standard.  It involves the following 2 IF
 | |
|        blocks.  If "freq" is judged ill-conditioned, then we first
 | |
|        modify freq[0] and freq[LPC_HALFORDER-1] (normally
 | |
|        LPC_HALFORDER = 10 for LPC applications), then we adjust
 | |
|        the other "freq" values slightly */
 | |
| 
 | |
| 
 | |
|        if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){
 | |
| 
 | |
| 
 | |
|            if (freq[0] <= 0.0) {
 | |
|                freq[0] = (float)0.022;
 | |
|            }
 | |
| 
 | |
| 
 | |
|            if (freq[LPC_FILTERORDER - 1] >= 0.5) {
 | |
|                freq[LPC_FILTERORDER - 1] = (float)0.499;
 | |
|            }
 | |
| 
 | |
|            hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /
 | |
|                (float) (LPC_FILTERORDER - 1);
 | |
| 
 | |
|            for (i=1; i<LPC_FILTERORDER; i++) {
 | |
|                freq[i] = freq[i - 1] + hlp;
 | |
|            }
 | |
|        }
 | |
| 
 | |
|        memset(a1, 0, LPC_HALFORDER*sizeof(float));
 | |
|        memset(a2, 0, LPC_HALFORDER*sizeof(float));
 | |
|        memset(b1, 0, LPC_HALFORDER*sizeof(float));
 | |
|        memset(b2, 0, LPC_HALFORDER*sizeof(float));
 | |
|        memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));
 | |
|        memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|        /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and
 | |
|        cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.
 | |
|        Note that for this code p[i] specifies the coefficients
 | |
|        used in .Q_A(z) while q[i] specifies the coefficients used
 | |
|        in .P_A(z) */
 | |
| 
 | |
|        for (i=0; i<LPC_HALFORDER; i++) {
 | |
|            p[i] = (float)cos(TWO_PI * freq[2 * i]);
 | |
|            q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);
 | |
|        }
 | |
| 
 | |
|        a[0] = 0.25;
 | |
|        b[0] = 0.25;
 | |
| 
 | |
|        for (i= 0; i<LPC_HALFORDER; i++) {
 | |
|            a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
 | |
|            b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
 | |
|            a2[i] = a1[i];
 | |
|            a1[i] = a[i];
 | |
|            b2[i] = b1[i];
 | |
|            b1[i] = b[i];
 | |
|        }
 | |
| 
 | |
|        for (j=0; j<LPC_FILTERORDER; j++) {
 | |
| 
 | |
|            if (j == 0) {
 | |
|                a[0] = 0.25;
 | |
|                b[0] = -0.25;
 | |
|            } else {
 | |
|                a[0] = b[0] = 0.0;
 | |
|            }
 | |
| 
 | |
|            for (i=0; i<LPC_HALFORDER; i++) {
 | |
|                a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
 | |
|                b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
 | |
|                a2[i] = a1[i];
 | |
|                a1[i] = a[i];
 | |
|                b2[i] = b1[i];
 | |
|                b1[i] = b[i];
 | |
|            }
 | |
| 
 | |
|            a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);
 | |
|        }
 | |
| 
 | |
|        a_coef[0] = 1.0;
 | |
|    }
 |