mirror of https://github.com/asterisk/asterisk
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1550 lines
44 KiB
1550 lines
44 KiB
/*
|
|
* Asterisk -- An open source telephony toolkit.
|
|
*
|
|
* Copyright (C) 1999 - 2005, Digium, Inc.
|
|
*
|
|
* Mark Spencer <markster@digium.com>
|
|
*
|
|
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
|
|
* DTMF detector.
|
|
*
|
|
* See http://www.asterisk.org for more information about
|
|
* the Asterisk project. Please do not directly contact
|
|
* any of the maintainers of this project for assistance;
|
|
* the project provides a web site, mailing lists and IRC
|
|
* channels for your use.
|
|
*
|
|
* This program is free software, distributed under the terms of
|
|
* the GNU General Public License Version 2. See the LICENSE file
|
|
* at the top of the source tree.
|
|
*/
|
|
|
|
/*! \file
|
|
*
|
|
* \brief Convenience Signal Processing routines
|
|
*
|
|
* \author Mark Spencer <markster@digium.com>
|
|
* \author Steve Underwood <steveu@coppice.org>
|
|
*/
|
|
|
|
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
|
|
/*
|
|
tone_detect.c - General telephony tone detection, and specific
|
|
detection of DTMF.
|
|
|
|
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
|
|
|
|
Despite my general liking of the GPL, I place this code in the
|
|
public domain for the benefit of all mankind - even the slimy
|
|
ones who might try to proprietize my work and use it to my
|
|
detriment.
|
|
*/
|
|
|
|
#include "asterisk.h"
|
|
|
|
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
|
|
|
|
#include <math.h>
|
|
|
|
#include "asterisk/frame.h"
|
|
#include "asterisk/channel.h"
|
|
#include "asterisk/dsp.h"
|
|
#include "asterisk/ulaw.h"
|
|
#include "asterisk/alaw.h"
|
|
#include "asterisk/utils.h"
|
|
#include "asterisk/options.h"
|
|
|
|
/*! Number of goertzels for progress detect */
|
|
enum gsamp_size {
|
|
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
|
|
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
|
|
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
|
|
};
|
|
|
|
enum prog_mode {
|
|
PROG_MODE_NA = 0,
|
|
PROG_MODE_CR,
|
|
PROG_MODE_UK
|
|
};
|
|
|
|
enum freq_index {
|
|
/*! For US modes { */
|
|
HZ_350 = 0,
|
|
HZ_440,
|
|
HZ_480,
|
|
HZ_620,
|
|
HZ_950,
|
|
HZ_1400,
|
|
HZ_1800, /*!< } */
|
|
|
|
/*! For CR/BR modes */
|
|
HZ_425 = 0,
|
|
|
|
/*! For UK mode */
|
|
HZ_400 = 0
|
|
};
|
|
|
|
static struct progalias {
|
|
char *name;
|
|
enum prog_mode mode;
|
|
} aliases[] = {
|
|
{ "us", PROG_MODE_NA },
|
|
{ "ca", PROG_MODE_NA },
|
|
{ "cr", PROG_MODE_CR },
|
|
{ "br", PROG_MODE_CR },
|
|
{ "uk", PROG_MODE_UK },
|
|
};
|
|
|
|
static struct progress {
|
|
enum gsamp_size size;
|
|
int freqs[7];
|
|
} modes[] = {
|
|
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
|
|
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
|
|
{ GSAMP_SIZE_UK, { 400 } }, /*!< UK */
|
|
};
|
|
|
|
#define DEFAULT_THRESHOLD 512
|
|
|
|
enum busy_detect {
|
|
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
|
|
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
|
|
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
|
|
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
|
|
BUSY_MAX =3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
|
|
};
|
|
|
|
/*! Remember last 15 units */
|
|
#define DSP_HISTORY 15
|
|
|
|
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
|
|
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
|
|
|
|
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
|
|
enum gsamp_thresh {
|
|
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
|
|
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
|
|
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
|
|
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
|
|
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
|
|
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
|
|
};
|
|
|
|
#define MAX_DTMF_DIGITS 128
|
|
|
|
/* Basic DTMF specs:
|
|
*
|
|
* Minimum tone on = 40ms
|
|
* Minimum tone off = 50ms
|
|
* Maximum digit rate = 10 per second
|
|
* Normal twist <= 8dB accepted
|
|
* Reverse twist <= 4dB accepted
|
|
* S/N >= 15dB will detect OK
|
|
* Attenuation <= 26dB will detect OK
|
|
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
|
|
*/
|
|
|
|
#define DTMF_THRESHOLD 8.0e7
|
|
#define FAX_THRESHOLD 8.0e7
|
|
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
|
|
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
|
|
#ifdef RADIO_RELAX
|
|
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 6.5 : 2.5) /* 4dB normal */
|
|
#else
|
|
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5) /* 4dB normal */
|
|
#endif
|
|
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
|
|
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
|
|
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5) /* 4dB normal */
|
|
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
|
|
#define DTMF_TO_TOTAL_ENERGY 42.0
|
|
|
|
#define BELL_MF_THRESHOLD 1.6e9
|
|
#define BELL_MF_TWIST 4.0 /* 6dB */
|
|
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
|
|
|
|
#if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
|
|
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
|
|
#endif
|
|
|
|
/* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
|
|
* followed by a 3 second silent (2100 Hz OFF) period.
|
|
*/
|
|
#define FAX_TONE_CNG_FREQ 1100
|
|
#define FAX_TONE_CNG_DURATION 500
|
|
#define FAX_TONE_CNG_DB 16
|
|
|
|
/* This signal may be sent by the Terminating FAX machine anywhere between
|
|
* 1.8 to 2.5 seconds AFTER answering the call. The CED signal consists
|
|
* of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
|
|
*/
|
|
#define FAX_TONE_CED_FREQ 2100
|
|
#define FAX_TONE_CED_DURATION 2600
|
|
#define FAX_TONE_CED_DB 16
|
|
|
|
#define SAMPLE_RATE 8000
|
|
|
|
/* How many samples a frame has. This constant is used when calculating
|
|
* Goertzel block size for tone_detect. It is only important if we want to
|
|
* remove (squelch) the tone. In this case it is important to have block
|
|
* size not to exceed size of voice frame. Otherwise by the moment the tone
|
|
* is detected it is too late to squelch it from previous frames.
|
|
*/
|
|
#define SAMPLES_IN_FRAME 160
|
|
|
|
|
|
typedef struct {
|
|
int v2;
|
|
int v3;
|
|
int chunky;
|
|
int fac;
|
|
int samples;
|
|
} goertzel_state_t;
|
|
|
|
typedef struct {
|
|
int value;
|
|
int power;
|
|
} goertzel_result_t;
|
|
|
|
typedef struct
|
|
{
|
|
int freq;
|
|
int block_size;
|
|
int squelch; /* Remove (squelch) tone */
|
|
goertzel_state_t tone;
|
|
float energy; /* Accumulated energy of the current block */
|
|
int samples_pending; /* Samples remain to complete the current block */
|
|
|
|
int hits_required; /* How many successive blocks with tone we are looking for */
|
|
float threshold; /* Energy of the tone relative to energy from all other signals to consider a hit */
|
|
|
|
int hit_count; /* How many successive blocks we consider tone present */
|
|
int last_hit; /* Indicates if the last processed block was a hit */
|
|
|
|
} tone_detect_state_t;
|
|
|
|
typedef struct
|
|
{
|
|
goertzel_state_t row_out[4];
|
|
goertzel_state_t col_out[4];
|
|
int lasthit;
|
|
int current_hit;
|
|
float energy;
|
|
int current_sample;
|
|
} dtmf_detect_state_t;
|
|
|
|
typedef struct
|
|
{
|
|
goertzel_state_t tone_out[6];
|
|
int current_hit;
|
|
int hits[5];
|
|
int current_sample;
|
|
} mf_detect_state_t;
|
|
|
|
typedef struct
|
|
{
|
|
char digits[MAX_DTMF_DIGITS + 1];
|
|
int current_digits;
|
|
int detected_digits;
|
|
int lost_digits;
|
|
|
|
union {
|
|
dtmf_detect_state_t dtmf;
|
|
mf_detect_state_t mf;
|
|
} td;
|
|
} digit_detect_state_t;
|
|
|
|
static float dtmf_row[] =
|
|
{
|
|
697.0, 770.0, 852.0, 941.0
|
|
};
|
|
static float dtmf_col[] =
|
|
{
|
|
1209.0, 1336.0, 1477.0, 1633.0
|
|
};
|
|
|
|
static float mf_tones[] =
|
|
{
|
|
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
|
|
};
|
|
|
|
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
|
|
|
|
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
|
|
|
|
static inline void goertzel_sample(goertzel_state_t *s, short sample)
|
|
{
|
|
int v1;
|
|
|
|
v1 = s->v2;
|
|
s->v2 = s->v3;
|
|
|
|
s->v3 = (s->fac * s->v2) >> 15;
|
|
s->v3 = s->v3 - v1 + (sample >> s->chunky);
|
|
if (abs(s->v3) > 32768) {
|
|
s->chunky++;
|
|
s->v3 = s->v3 >> 1;
|
|
s->v2 = s->v2 >> 1;
|
|
v1 = v1 >> 1;
|
|
}
|
|
}
|
|
|
|
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i=0;i<count;i++)
|
|
goertzel_sample(s, samps[i]);
|
|
}
|
|
|
|
|
|
static inline float goertzel_result(goertzel_state_t *s)
|
|
{
|
|
goertzel_result_t r;
|
|
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
|
|
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
|
|
r.power = s->chunky * 2;
|
|
return (float)r.value * (float)(1 << r.power);
|
|
}
|
|
|
|
static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
|
|
{
|
|
s->v2 = s->v3 = s->chunky = 0.0;
|
|
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / SAMPLE_RATE));
|
|
s->samples = samples;
|
|
}
|
|
|
|
static inline void goertzel_reset(goertzel_state_t *s)
|
|
{
|
|
s->v2 = s->v3 = s->chunky = 0.0;
|
|
}
|
|
|
|
struct ast_dsp {
|
|
struct ast_frame f;
|
|
int threshold;
|
|
int totalsilence;
|
|
int totalnoise;
|
|
int features;
|
|
int ringtimeout;
|
|
int busymaybe;
|
|
int busycount;
|
|
int busy_tonelength;
|
|
int busy_quietlength;
|
|
int historicnoise[DSP_HISTORY];
|
|
int historicsilence[DSP_HISTORY];
|
|
goertzel_state_t freqs[7];
|
|
int freqcount;
|
|
int gsamps;
|
|
enum gsamp_size gsamp_size;
|
|
enum prog_mode progmode;
|
|
int tstate;
|
|
int tcount;
|
|
int digitmode;
|
|
int faxmode;
|
|
int thinkdigit;
|
|
float genergy;
|
|
digit_detect_state_t digit_state;
|
|
tone_detect_state_t cng_tone_state;
|
|
tone_detect_state_t ced_tone_state;
|
|
};
|
|
|
|
static void ast_tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp)
|
|
{
|
|
int duration_samples;
|
|
float x;
|
|
int periods_in_block;
|
|
|
|
s->freq = freq;
|
|
|
|
/* Desired tone duration in samples */
|
|
duration_samples = duration * SAMPLE_RATE / 1000;
|
|
/* We want to allow 10% deviation of tone duration */
|
|
duration_samples = duration_samples * 9 / 10;
|
|
|
|
/* If we want to remove tone, it is important to have block size not
|
|
to exceed frame size. Otherwise by the moment tone is detected it is too late
|
|
to squelch it from previous frames */
|
|
s->block_size = SAMPLES_IN_FRAME;
|
|
|
|
periods_in_block = s->block_size * freq / SAMPLE_RATE;
|
|
|
|
/* Make sure we will have at least 5 periods at target frequency for analisys.
|
|
This may make block larger than expected packet and will make squelching impossible
|
|
but at least we will be detecting the tone */
|
|
if (periods_in_block < 5)
|
|
periods_in_block = 5;
|
|
|
|
/* Now calculate final block size. It will contain integer number of periods */
|
|
s->block_size = periods_in_block * SAMPLE_RATE / freq;
|
|
|
|
/* tone_detect is currently only used to detect fax tones and we
|
|
do not need suqlching the fax tones */
|
|
s->squelch = 0;
|
|
|
|
/* Account for the first and the last block to be incomplete
|
|
and thus no tone will be detected in them */
|
|
s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;
|
|
|
|
goertzel_init(&s->tone, freq, s->block_size);
|
|
|
|
s->samples_pending = s->block_size;
|
|
s->hit_count = 0;
|
|
s->last_hit = 0;
|
|
s->energy = 0.0;
|
|
|
|
/* We want tone energy to be amp decibels above the rest of the signal (the noise).
|
|
According to Parseval's theorem the energy computed in time domain equals to energy
|
|
computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
|
|
from the energy in the time domain we will get energy of the remaining signal (without the tone
|
|
we are detecting). We will be checking that
|
|
10*log(Ew / (Et - Ew)) > amp
|
|
Calculate threshold so that we will be actually checking
|
|
Ew > Et * threshold
|
|
*/
|
|
|
|
x = pow(10.0, amp / 10.0);
|
|
s->threshold = x / (x + 1);
|
|
|
|
ast_debug(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
|
|
}
|
|
|
|
static void ast_fax_detect_init(struct ast_dsp *s)
|
|
{
|
|
ast_tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB);
|
|
ast_tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB);
|
|
}
|
|
|
|
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
|
|
{
|
|
int i;
|
|
|
|
s->lasthit = 0;
|
|
s->current_hit = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
goertzel_init (&s->row_out[i], dtmf_row[i], 102);
|
|
goertzel_init (&s->col_out[i], dtmf_col[i], 102);
|
|
s->energy = 0.0;
|
|
}
|
|
s->current_sample = 0;
|
|
}
|
|
|
|
static void ast_mf_detect_init (mf_detect_state_t *s)
|
|
{
|
|
int i;
|
|
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
|
|
for (i = 0; i < 6; i++) {
|
|
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
|
|
}
|
|
s->current_sample = 0;
|
|
s->current_hit = 0;
|
|
}
|
|
|
|
static void ast_digit_detect_init(digit_detect_state_t *s, int mf)
|
|
{
|
|
s->current_digits = 0;
|
|
s->detected_digits = 0;
|
|
s->lost_digits = 0;
|
|
s->digits[0] = '\0';
|
|
|
|
if (mf)
|
|
ast_mf_detect_init(&s->td.mf);
|
|
else
|
|
ast_dtmf_detect_init(&s->td.dtmf);
|
|
}
|
|
|
|
static int tone_detect(tone_detect_state_t *s, int16_t *amp, int samples,
|
|
int *writeback)
|
|
{
|
|
float tone_energy;
|
|
int i;
|
|
int hit = 0;
|
|
int limit;
|
|
int res = 0;
|
|
int16_t *ptr;
|
|
|
|
while (1) {
|
|
/* Process in blocks. */
|
|
limit = (samples < s->samples_pending) ? samples : s->samples_pending;
|
|
|
|
for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
|
|
/* signed 32 bit int should be enough to suqare any possible signed 16 bit value */
|
|
s->energy += (int32_t) *ptr * (int32_t) *ptr;
|
|
|
|
goertzel_sample(&s->tone, *ptr);
|
|
}
|
|
|
|
s->samples_pending -= limit;
|
|
|
|
if (s->samples_pending) {
|
|
/* Finished incomplete (last) block */
|
|
if (s->last_hit && s->squelch) {
|
|
/* If we had a hit last time, go ahead and clear this out since likely it
|
|
will be another hit */
|
|
memset(amp, 0, sizeof(*amp) * limit);
|
|
if (writeback)
|
|
*writeback = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
tone_energy = goertzel_result(&s->tone);
|
|
|
|
/* Scale to make comparable */
|
|
tone_energy *= 2.0;
|
|
s->energy *= s->block_size;
|
|
|
|
ast_debug(10, "tone %d, Ew=%f, Et=%f, s/n=%10.2f\n", s->freq, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
|
|
hit = 0;
|
|
if (tone_energy > s->energy * s->threshold) {
|
|
|
|
ast_debug(10, "Hit! count=%d\n", s->hit_count);
|
|
hit = 1;
|
|
|
|
if (s->squelch) {
|
|
/* Zero out frame data */
|
|
memset(amp, 0, sizeof(*amp) * limit);
|
|
if (writeback)
|
|
*writeback = 1;
|
|
}
|
|
}
|
|
|
|
if (s->hit_count)
|
|
s->hit_count++;
|
|
|
|
if (hit == s->last_hit) {
|
|
if (!hit) {
|
|
/* Two successive misses. Tone ended */
|
|
s->hit_count = 0;
|
|
} else if (!s->hit_count) {
|
|
s->hit_count++;
|
|
}
|
|
|
|
}
|
|
|
|
if (s->hit_count == s->hits_required) {
|
|
ast_debug(1, "%d Hz done detected\n", s->freq);
|
|
res = 1;
|
|
}
|
|
|
|
s->last_hit = hit;
|
|
|
|
/* Reset for the next block */
|
|
goertzel_reset(&s->tone);
|
|
|
|
/* Advance to the next block */
|
|
s->energy = 0.0;
|
|
s->samples_pending = s->block_size;
|
|
|
|
amp += limit;
|
|
samples -= limit;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static void store_digit(digit_detect_state_t *s, char digit)
|
|
{
|
|
s->detected_digits++;
|
|
if (s->current_digits < MAX_DTMF_DIGITS) {
|
|
s->digits[s->current_digits++] = digit;
|
|
s->digits[s->current_digits] = '\0';
|
|
} else {
|
|
ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
|
|
s->lost_digits++;
|
|
}
|
|
}
|
|
|
|
static int dtmf_detect(digit_detect_state_t *s, int16_t amp[], int samples,
|
|
int digitmode, int *writeback)
|
|
{
|
|
float row_energy[4];
|
|
float col_energy[4];
|
|
float famp;
|
|
int i;
|
|
int j;
|
|
int sample;
|
|
int best_row;
|
|
int best_col;
|
|
int hit;
|
|
int limit;
|
|
|
|
hit = 0;
|
|
for (sample = 0; sample < samples; sample = limit) {
|
|
/* 102 is optimised to meet the DTMF specs. */
|
|
if ((samples - sample) >= (102 - s->td.dtmf.current_sample))
|
|
limit = sample + (102 - s->td.dtmf.current_sample);
|
|
else
|
|
limit = samples;
|
|
/* The following unrolled loop takes only 35% (rough estimate) of the
|
|
time of a rolled loop on the machine on which it was developed */
|
|
for (j = sample; j < limit; j++) {
|
|
famp = amp[j];
|
|
s->td.dtmf.energy += famp*famp;
|
|
/* With GCC 2.95, the following unrolled code seems to take about 35%
|
|
(rough estimate) as long as a neat little 0-3 loop */
|
|
goertzel_sample(s->td.dtmf.row_out, amp[j]);
|
|
goertzel_sample(s->td.dtmf.col_out, amp[j]);
|
|
goertzel_sample(s->td.dtmf.row_out + 1, amp[j]);
|
|
goertzel_sample(s->td.dtmf.col_out + 1, amp[j]);
|
|
goertzel_sample(s->td.dtmf.row_out + 2, amp[j]);
|
|
goertzel_sample(s->td.dtmf.col_out + 2, amp[j]);
|
|
goertzel_sample(s->td.dtmf.row_out + 3, amp[j]);
|
|
goertzel_sample(s->td.dtmf.col_out + 3, amp[j]);
|
|
}
|
|
s->td.dtmf.current_sample += (limit - sample);
|
|
if (s->td.dtmf.current_sample < 102) {
|
|
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
|
|
/* If we had a hit last time, go ahead and clear this out since likely it
|
|
will be another hit */
|
|
for (i=sample;i<limit;i++)
|
|
amp[i] = 0;
|
|
*writeback = 1;
|
|
}
|
|
continue;
|
|
}
|
|
/* We are at the end of a DTMF detection block */
|
|
/* Find the peak row and the peak column */
|
|
row_energy[0] = goertzel_result (&s->td.dtmf.row_out[0]);
|
|
col_energy[0] = goertzel_result (&s->td.dtmf.col_out[0]);
|
|
|
|
for (best_row = best_col = 0, i = 1; i < 4; i++) {
|
|
row_energy[i] = goertzel_result (&s->td.dtmf.row_out[i]);
|
|
if (row_energy[i] > row_energy[best_row])
|
|
best_row = i;
|
|
col_energy[i] = goertzel_result (&s->td.dtmf.col_out[i]);
|
|
if (col_energy[i] > col_energy[best_col])
|
|
best_col = i;
|
|
}
|
|
hit = 0;
|
|
/* Basic signal level test and the twist test */
|
|
if (row_energy[best_row] >= DTMF_THRESHOLD &&
|
|
col_energy[best_col] >= DTMF_THRESHOLD &&
|
|
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
|
|
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
|
|
/* Relative peak test */
|
|
for (i = 0; i < 4; i++) {
|
|
if ((i != best_col &&
|
|
col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
|
|
(i != best_row
|
|
&& row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
|
|
break;
|
|
}
|
|
}
|
|
/* ... and fraction of total energy test */
|
|
if (i >= 4 &&
|
|
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->td.dtmf.energy) {
|
|
/* Got a hit */
|
|
hit = dtmf_positions[(best_row << 2) + best_col];
|
|
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
|
|
/* Zero out frame data if this is part DTMF */
|
|
for (i=sample;i<limit;i++)
|
|
amp[i] = 0;
|
|
*writeback = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The logic in the next test is:
|
|
For digits we need two successive identical clean detects, with
|
|
something different preceeding it. This can work with
|
|
back to back differing digits. More importantly, it
|
|
can work with nasty phones that give a very wobbly start
|
|
to a digit */
|
|
if (hit != s->td.dtmf.current_hit) {
|
|
if (hit && s->td.dtmf.lasthit == hit) {
|
|
s->td.dtmf.current_hit = hit;
|
|
store_digit(s, hit);
|
|
} else if (s->td.dtmf.lasthit != s->td.dtmf.current_hit) {
|
|
s->td.dtmf.current_hit = 0;
|
|
}
|
|
}
|
|
s->td.dtmf.lasthit = hit;
|
|
|
|
/* Reinitialise the detector for the next block */
|
|
for (i = 0; i < 4; i++) {
|
|
goertzel_reset(&s->td.dtmf.row_out[i]);
|
|
goertzel_reset(&s->td.dtmf.col_out[i]);
|
|
}
|
|
s->td.dtmf.energy = 0.0;
|
|
s->td.dtmf.current_sample = 0;
|
|
}
|
|
return (s->td.dtmf.current_hit); /* return the debounced hit */
|
|
}
|
|
|
|
/* MF goertzel size */
|
|
#define MF_GSIZE 120
|
|
|
|
static int mf_detect(digit_detect_state_t *s, int16_t amp[],
|
|
int samples, int digitmode, int *writeback)
|
|
{
|
|
float energy[6];
|
|
int best;
|
|
int second_best;
|
|
float famp;
|
|
int i;
|
|
int j;
|
|
int sample;
|
|
int hit;
|
|
int limit;
|
|
|
|
hit = 0;
|
|
for (sample = 0; sample < samples; sample = limit) {
|
|
/* 80 is optimised to meet the MF specs. */
|
|
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample))
|
|
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
|
|
else
|
|
limit = samples;
|
|
/* The following unrolled loop takes only 35% (rough estimate) of the
|
|
time of a rolled loop on the machine on which it was developed */
|
|
for (j = sample; j < limit; j++) {
|
|
famp = amp[j];
|
|
/* With GCC 2.95, the following unrolled code seems to take about 35%
|
|
(rough estimate) as long as a neat little 0-3 loop */
|
|
goertzel_sample(s->td.mf.tone_out, amp[j]);
|
|
goertzel_sample(s->td.mf.tone_out + 1, amp[j]);
|
|
goertzel_sample(s->td.mf.tone_out + 2, amp[j]);
|
|
goertzel_sample(s->td.mf.tone_out + 3, amp[j]);
|
|
goertzel_sample(s->td.mf.tone_out + 4, amp[j]);
|
|
goertzel_sample(s->td.mf.tone_out + 5, amp[j]);
|
|
}
|
|
s->td.mf.current_sample += (limit - sample);
|
|
if (s->td.mf.current_sample < MF_GSIZE) {
|
|
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
|
|
/* If we had a hit last time, go ahead and clear this out since likely it
|
|
will be another hit */
|
|
for (i=sample;i<limit;i++)
|
|
amp[i] = 0;
|
|
*writeback = 1;
|
|
}
|
|
continue;
|
|
}
|
|
/* We're at the end of an MF detection block. */
|
|
/* Find the two highest energies. The spec says to look for
|
|
two tones and two tones only. Taking this literally -ie
|
|
only two tones pass the minimum threshold - doesn't work
|
|
well. The sinc function mess, due to rectangular windowing
|
|
ensure that! Find the two highest energies and ensure they
|
|
are considerably stronger than any of the others. */
|
|
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
|
|
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
|
|
if (energy[0] > energy[1]) {
|
|
best = 0;
|
|
second_best = 1;
|
|
} else {
|
|
best = 1;
|
|
second_best = 0;
|
|
}
|
|
/*endif*/
|
|
for (i=2;i<6;i++) {
|
|
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
|
|
if (energy[i] >= energy[best]) {
|
|
second_best = best;
|
|
best = i;
|
|
} else if (energy[i] >= energy[second_best]) {
|
|
second_best = i;
|
|
}
|
|
}
|
|
/* Basic signal level and twist tests */
|
|
hit = 0;
|
|
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
|
|
&& energy[best] < energy[second_best]*BELL_MF_TWIST
|
|
&& energy[best]*BELL_MF_TWIST > energy[second_best]) {
|
|
/* Relative peak test */
|
|
hit = -1;
|
|
for (i=0;i<6;i++) {
|
|
if (i != best && i != second_best) {
|
|
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
|
|
/* The best two are not clearly the best */
|
|
hit = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (hit) {
|
|
/* Get the values into ascending order */
|
|
if (second_best < best) {
|
|
i = best;
|
|
best = second_best;
|
|
second_best = i;
|
|
}
|
|
best = best*5 + second_best - 1;
|
|
hit = bell_mf_positions[best];
|
|
/* Look for two successive similar results */
|
|
/* The logic in the next test is:
|
|
For KP we need 4 successive identical clean detects, with
|
|
two blocks of something different preceeding it. For anything
|
|
else we need two successive identical clean detects, with
|
|
two blocks of something different preceeding it. */
|
|
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
|
|
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
|
|
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
|
|
hit != s->td.mf.hits[0]))) {
|
|
store_digit(s, hit);
|
|
}
|
|
}
|
|
|
|
|
|
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
|
|
/* Two successive block without a hit terminate current digit */
|
|
s->td.mf.current_hit = 0;
|
|
}
|
|
|
|
s->td.mf.hits[0] = s->td.mf.hits[1];
|
|
s->td.mf.hits[1] = s->td.mf.hits[2];
|
|
s->td.mf.hits[2] = s->td.mf.hits[3];
|
|
s->td.mf.hits[3] = s->td.mf.hits[4];
|
|
s->td.mf.hits[4] = hit;
|
|
/* Reinitialise the detector for the next block */
|
|
for (i = 0; i < 6; i++)
|
|
goertzel_reset(&s->td.mf.tone_out[i]);
|
|
s->td.mf.current_sample = 0;
|
|
}
|
|
|
|
return (s->td.mf.current_hit); /* return the debounced hit */
|
|
}
|
|
|
|
static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
|
|
{
|
|
int res = 0;
|
|
|
|
if ((dsp->features & DSP_FEATURE_DTMF_DETECT) && (dsp->digitmode & DSP_DIGITMODE_MF))
|
|
res = mf_detect(&dsp->digit_state, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
|
|
else if (dsp->features & DSP_FEATURE_DTMF_DETECT)
|
|
res = dtmf_detect(&dsp->digit_state, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
|
|
|
|
if ((dsp->features & DSP_FEATURE_FAX_DETECT) && (dsp->faxmode & DSP_FAXMODE_DETECT_CNG)) {
|
|
if (tone_detect(&dsp->cng_tone_state, s, len, NULL)) {
|
|
store_digit(&dsp->digit_state, 'f');
|
|
res = 'f';
|
|
}
|
|
}
|
|
|
|
if ((dsp->features & DSP_FEATURE_FAX_DETECT) && (dsp->faxmode & DSP_FAXMODE_DETECT_CED)) {
|
|
if (tone_detect(&dsp->ced_tone_state, s, len, NULL)) {
|
|
store_digit(&dsp->digit_state, 'e');
|
|
res = 'e';
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
|
|
{
|
|
short *s;
|
|
int len;
|
|
int ign=0;
|
|
|
|
if (inf->frametype != AST_FRAME_VOICE) {
|
|
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
|
|
return 0;
|
|
}
|
|
if (inf->subclass != AST_FORMAT_SLINEAR) {
|
|
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
|
|
return 0;
|
|
}
|
|
s = inf->data;
|
|
len = inf->datalen / 2;
|
|
return __ast_dsp_digitdetect(dsp, s, len, &ign);
|
|
}
|
|
|
|
static inline int pair_there(float p1, float p2, float i1, float i2, float e)
|
|
{
|
|
/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
|
|
/* Make sure absolute levels are high enough */
|
|
if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH))
|
|
return 0;
|
|
/* Amplify ignored stuff */
|
|
i2 *= TONE_THRESH;
|
|
i1 *= TONE_THRESH;
|
|
e *= TONE_THRESH;
|
|
/* Check first tone */
|
|
if ((p1 < i1) || (p1 < i2) || (p1 < e))
|
|
return 0;
|
|
/* And second */
|
|
if ((p2 < i1) || (p2 < i2) || (p2 < e))
|
|
return 0;
|
|
/* Guess it's there... */
|
|
return 1;
|
|
}
|
|
|
|
int ast_dsp_getdigits(struct ast_dsp *dsp, char *buf, int max)
|
|
{
|
|
if (max > dsp->digit_state.current_digits)
|
|
max = dsp->digit_state.current_digits;
|
|
if (max > 0) {
|
|
memcpy(buf, dsp->digit_state.digits, max);
|
|
memmove(dsp->digit_state.digits, dsp->digit_state.digits + max, dsp->digit_state.current_digits - max);
|
|
dsp->digit_state.current_digits -= max;
|
|
}
|
|
buf[max] = '\0';
|
|
return max;
|
|
}
|
|
|
|
static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
|
|
{
|
|
int x;
|
|
int y;
|
|
int pass;
|
|
int newstate = DSP_TONE_STATE_SILENCE;
|
|
int res = 0;
|
|
while (len) {
|
|
/* Take the lesser of the number of samples we need and what we have */
|
|
pass = len;
|
|
if (pass > dsp->gsamp_size - dsp->gsamps)
|
|
pass = dsp->gsamp_size - dsp->gsamps;
|
|
for (x=0;x<pass;x++) {
|
|
for (y=0;y<dsp->freqcount;y++)
|
|
goertzel_sample(&dsp->freqs[y], s[x]);
|
|
dsp->genergy += s[x] * s[x];
|
|
}
|
|
s += pass;
|
|
dsp->gsamps += pass;
|
|
len -= pass;
|
|
if (dsp->gsamps == dsp->gsamp_size) {
|
|
float hz[7];
|
|
for (y=0;y<7;y++)
|
|
hz[y] = goertzel_result(&dsp->freqs[y]);
|
|
switch (dsp->progmode) {
|
|
case PROG_MODE_NA:
|
|
if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
|
|
newstate = DSP_TONE_STATE_BUSY;
|
|
} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
|
|
newstate = DSP_TONE_STATE_RINGING;
|
|
} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
|
|
newstate = DSP_TONE_STATE_DIALTONE;
|
|
} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
|
|
newstate = DSP_TONE_STATE_SPECIAL1;
|
|
} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
|
|
if (dsp->tstate == DSP_TONE_STATE_SPECIAL1)
|
|
newstate = DSP_TONE_STATE_SPECIAL2;
|
|
} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
|
|
if (dsp->tstate == DSP_TONE_STATE_SPECIAL2)
|
|
newstate = DSP_TONE_STATE_SPECIAL3;
|
|
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
|
|
newstate = DSP_TONE_STATE_TALKING;
|
|
} else
|
|
newstate = DSP_TONE_STATE_SILENCE;
|
|
break;
|
|
case PROG_MODE_CR:
|
|
if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
|
|
newstate = DSP_TONE_STATE_RINGING;
|
|
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
|
|
newstate = DSP_TONE_STATE_TALKING;
|
|
} else
|
|
newstate = DSP_TONE_STATE_SILENCE;
|
|
break;
|
|
case PROG_MODE_UK:
|
|
if (hz[HZ_400] > TONE_MIN_THRESH * TONE_THRESH) {
|
|
newstate = DSP_TONE_STATE_HUNGUP;
|
|
}
|
|
break;
|
|
default:
|
|
ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
|
|
}
|
|
if (newstate == dsp->tstate) {
|
|
dsp->tcount++;
|
|
if (dsp->ringtimeout)
|
|
dsp->ringtimeout++;
|
|
switch (dsp->tstate) {
|
|
case DSP_TONE_STATE_RINGING:
|
|
if ((dsp->features & DSP_PROGRESS_RINGING) &&
|
|
(dsp->tcount==THRESH_RING)) {
|
|
res = AST_CONTROL_RINGING;
|
|
dsp->ringtimeout= 1;
|
|
}
|
|
break;
|
|
case DSP_TONE_STATE_BUSY:
|
|
if ((dsp->features & DSP_PROGRESS_BUSY) &&
|
|
(dsp->tcount==THRESH_BUSY)) {
|
|
res = AST_CONTROL_BUSY;
|
|
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
|
|
}
|
|
break;
|
|
case DSP_TONE_STATE_TALKING:
|
|
if ((dsp->features & DSP_PROGRESS_TALK) &&
|
|
(dsp->tcount==THRESH_TALK)) {
|
|
res = AST_CONTROL_ANSWER;
|
|
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
|
|
}
|
|
break;
|
|
case DSP_TONE_STATE_SPECIAL3:
|
|
if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
|
|
(dsp->tcount==THRESH_CONGESTION)) {
|
|
res = AST_CONTROL_CONGESTION;
|
|
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
|
|
}
|
|
break;
|
|
case DSP_TONE_STATE_HUNGUP:
|
|
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
|
|
(dsp->tcount==THRESH_HANGUP)) {
|
|
res = AST_CONTROL_HANGUP;
|
|
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
|
|
}
|
|
break;
|
|
}
|
|
if (dsp->ringtimeout==THRESH_RING2ANSWER) {
|
|
ast_debug(1, "Consider call as answered because of timeout after last ring\n");
|
|
res = AST_CONTROL_ANSWER;
|
|
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
|
|
}
|
|
} else {
|
|
ast_debug(5, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
|
|
ast_debug(5, "Start state %d\n", newstate);
|
|
dsp->tstate = newstate;
|
|
dsp->tcount = 1;
|
|
}
|
|
|
|
/* Reset goertzel */
|
|
for (x=0;x<7;x++)
|
|
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
|
|
dsp->gsamps = 0;
|
|
dsp->genergy = 0.0;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
|
|
{
|
|
if (inf->frametype != AST_FRAME_VOICE) {
|
|
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
|
|
return 0;
|
|
}
|
|
if (inf->subclass != AST_FORMAT_SLINEAR) {
|
|
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
|
|
return 0;
|
|
}
|
|
return __ast_dsp_call_progress(dsp, inf->data, inf->datalen / 2);
|
|
}
|
|
|
|
static int __ast_dsp_silence(struct ast_dsp *dsp, short *s, int len, int *totalsilence)
|
|
{
|
|
int accum;
|
|
int x;
|
|
int res = 0;
|
|
|
|
if (!len)
|
|
return 0;
|
|
accum = 0;
|
|
for (x=0;x<len; x++)
|
|
accum += abs(s[x]);
|
|
accum /= len;
|
|
if (accum < dsp->threshold) {
|
|
/* Silent */
|
|
dsp->totalsilence += len/8;
|
|
if (dsp->totalnoise) {
|
|
/* Move and save history */
|
|
memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount +1, dsp->busycount*sizeof(dsp->historicnoise[0]));
|
|
dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
|
|
/* we don't want to check for busydetect that frequently */
|
|
#if 0
|
|
dsp->busymaybe = 1;
|
|
#endif
|
|
}
|
|
dsp->totalnoise = 0;
|
|
res = 1;
|
|
} else {
|
|
/* Not silent */
|
|
dsp->totalnoise += len/8;
|
|
if (dsp->totalsilence) {
|
|
int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
|
|
int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
|
|
/* Move and save history */
|
|
memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount*sizeof(dsp->historicsilence[0]));
|
|
dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
|
|
/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
|
|
if (silence1 < silence2) {
|
|
if (silence1 + silence1*BUSY_PERCENT/100 >= silence2)
|
|
dsp->busymaybe = 1;
|
|
else
|
|
dsp->busymaybe = 0;
|
|
} else {
|
|
if (silence1 - silence1*BUSY_PERCENT/100 <= silence2)
|
|
dsp->busymaybe = 1;
|
|
else
|
|
dsp->busymaybe = 0;
|
|
}
|
|
}
|
|
dsp->totalsilence = 0;
|
|
}
|
|
if (totalsilence)
|
|
*totalsilence = dsp->totalsilence;
|
|
return res;
|
|
}
|
|
|
|
int ast_dsp_busydetect(struct ast_dsp *dsp)
|
|
{
|
|
int res = 0, x;
|
|
#ifndef BUSYDETECT_TONEONLY
|
|
int avgsilence = 0, hitsilence = 0;
|
|
#endif
|
|
int avgtone = 0, hittone = 0;
|
|
if (!dsp->busymaybe)
|
|
return res;
|
|
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
|
|
#ifndef BUSYDETECT_TONEONLY
|
|
avgsilence += dsp->historicsilence[x];
|
|
#endif
|
|
avgtone += dsp->historicnoise[x];
|
|
}
|
|
#ifndef BUSYDETECT_TONEONLY
|
|
avgsilence /= dsp->busycount;
|
|
#endif
|
|
avgtone /= dsp->busycount;
|
|
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
|
|
#ifndef BUSYDETECT_TONEONLY
|
|
if (avgsilence > dsp->historicsilence[x]) {
|
|
if (avgsilence - (avgsilence*BUSY_PERCENT/100) <= dsp->historicsilence[x])
|
|
hitsilence++;
|
|
} else {
|
|
if (avgsilence + (avgsilence*BUSY_PERCENT/100) >= dsp->historicsilence[x])
|
|
hitsilence++;
|
|
}
|
|
#endif
|
|
if (avgtone > dsp->historicnoise[x]) {
|
|
if (avgtone - (avgtone*BUSY_PERCENT/100) <= dsp->historicnoise[x])
|
|
hittone++;
|
|
} else {
|
|
if (avgtone + (avgtone*BUSY_PERCENT/100) >= dsp->historicnoise[x])
|
|
hittone++;
|
|
}
|
|
}
|
|
#ifndef BUSYDETECT_TONEONLY
|
|
if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) &&
|
|
(avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) &&
|
|
(avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
|
|
#else
|
|
if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
|
|
#endif
|
|
#ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
|
|
if (avgtone > avgsilence) {
|
|
if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence)
|
|
res = 1;
|
|
} else {
|
|
if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence)
|
|
res = 1;
|
|
}
|
|
#else
|
|
res = 1;
|
|
#endif
|
|
}
|
|
/* If we know the expected busy tone length, check we are in the range */
|
|
if (res && (dsp->busy_tonelength > 0)) {
|
|
if (abs(avgtone - dsp->busy_tonelength) > (dsp->busy_tonelength*BUSY_PAT_PERCENT/100)) {
|
|
#ifdef BUSYDETECT_DEBUG
|
|
ast_debug(5, "busy detector: avgtone of %d not close enough to desired %d\n",
|
|
avgtone, dsp->busy_tonelength);
|
|
#endif
|
|
res = 0;
|
|
}
|
|
}
|
|
#ifndef BUSYDETECT_TONEONLY
|
|
/* If we know the expected busy tone silent-period length, check we are in the range */
|
|
if (res && (dsp->busy_quietlength > 0)) {
|
|
if (abs(avgsilence - dsp->busy_quietlength) > (dsp->busy_quietlength*BUSY_PAT_PERCENT/100)) {
|
|
#ifdef BUSYDETECT_DEBUG
|
|
ast_debug(5, "busy detector: avgsilence of %d not close enough to desired %d\n",
|
|
avgsilence, dsp->busy_quietlength);
|
|
#endif
|
|
res = 0;
|
|
}
|
|
}
|
|
#endif
|
|
#if !defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_DEBUG)
|
|
if (res) {
|
|
ast_debug(5, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
|
|
} else {
|
|
ast_debug(5, "busy detector: FAILED with avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
|
|
}
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
|
|
{
|
|
short *s;
|
|
int len;
|
|
|
|
if (f->frametype != AST_FRAME_VOICE) {
|
|
ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
|
|
return 0;
|
|
}
|
|
if (f->subclass != AST_FORMAT_SLINEAR) {
|
|
ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
|
|
return 0;
|
|
}
|
|
s = f->data;
|
|
len = f->datalen/2;
|
|
return __ast_dsp_silence(dsp, s, len, totalsilence);
|
|
}
|
|
|
|
struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
|
|
{
|
|
int silence;
|
|
int res;
|
|
int digit;
|
|
int x;
|
|
short *shortdata;
|
|
unsigned char *odata;
|
|
int len;
|
|
int writeback = 0;
|
|
|
|
#define FIX_INF(inf) do { \
|
|
if (writeback) { \
|
|
switch (inf->subclass) { \
|
|
case AST_FORMAT_SLINEAR: \
|
|
break; \
|
|
case AST_FORMAT_ULAW: \
|
|
for (x=0;x<len;x++) \
|
|
odata[x] = AST_LIN2MU((unsigned short)shortdata[x]); \
|
|
break; \
|
|
case AST_FORMAT_ALAW: \
|
|
for (x=0;x<len;x++) \
|
|
odata[x] = AST_LIN2A((unsigned short)shortdata[x]); \
|
|
break; \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
if (!af)
|
|
return NULL;
|
|
if (af->frametype != AST_FRAME_VOICE)
|
|
return af;
|
|
odata = af->data;
|
|
len = af->datalen;
|
|
/* Make sure we have short data */
|
|
switch (af->subclass) {
|
|
case AST_FORMAT_SLINEAR:
|
|
shortdata = af->data;
|
|
len = af->datalen / 2;
|
|
break;
|
|
case AST_FORMAT_ULAW:
|
|
shortdata = alloca(af->datalen * 2);
|
|
for (x = 0;x < len; x++)
|
|
shortdata[x] = AST_MULAW(odata[x]);
|
|
break;
|
|
case AST_FORMAT_ALAW:
|
|
shortdata = alloca(af->datalen * 2);
|
|
for (x = 0; x < len; x++)
|
|
shortdata[x] = AST_ALAW(odata[x]);
|
|
break;
|
|
default:
|
|
ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(af->subclass));
|
|
return af;
|
|
}
|
|
silence = __ast_dsp_silence(dsp, shortdata, len, NULL);
|
|
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_NULL;
|
|
ast_frfree(af);
|
|
ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
|
|
return &dsp->f;
|
|
}
|
|
if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
|
|
chan->_softhangup |= AST_SOFTHANGUP_DEV;
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_CONTROL;
|
|
dsp->f.subclass = AST_CONTROL_BUSY;
|
|
ast_frfree(af);
|
|
ast_debug(1, "Requesting Hangup because the busy tone was detected on channel %s\n", chan->name);
|
|
ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
|
|
return &dsp->f;
|
|
}
|
|
if (((dsp->features & DSP_FEATURE_DTMF_DETECT) || (dsp->features & DSP_FEATURE_FAX_DETECT))) {
|
|
digit = __ast_dsp_digitdetect(dsp, shortdata, len, &writeback);
|
|
#if 0
|
|
if (digit)
|
|
printf("Performing digit detection returned %d, digitmode is %d\n", digit, dsp->digitmode);
|
|
#endif
|
|
if (dsp->digitmode & (DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX)) {
|
|
if (!dsp->thinkdigit) {
|
|
if (digit) {
|
|
/* Looks like we might have something.
|
|
* Request a conference mute for the moment */
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_DTMF;
|
|
dsp->f.subclass = 'm';
|
|
dsp->thinkdigit = 'x';
|
|
FIX_INF(af);
|
|
if (chan)
|
|
ast_queue_frame(chan, af);
|
|
ast_frfree(af);
|
|
ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
|
|
return &dsp->f;
|
|
}
|
|
} else {
|
|
if (digit) {
|
|
/* Thought we saw one last time. Pretty sure we really have now */
|
|
if ((dsp->thinkdigit != 'x') && (dsp->thinkdigit != digit)) {
|
|
/* If we found a digit, and we're changing digits, go
|
|
ahead and send this one, but DON'T stop confmute because
|
|
we're detecting something else, too... */
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_DTMF_END;
|
|
dsp->f.subclass = dsp->thinkdigit;
|
|
FIX_INF(af);
|
|
if (chan)
|
|
ast_queue_frame(chan, af);
|
|
ast_frfree(af);
|
|
} else {
|
|
dsp->thinkdigit = digit;
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_DTMF_BEGIN;
|
|
dsp->f.subclass = dsp->thinkdigit;
|
|
FIX_INF(af);
|
|
if (chan)
|
|
ast_queue_frame(chan, af);
|
|
ast_frfree(af);
|
|
}
|
|
ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
|
|
return &dsp->f;
|
|
} else {
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
if (dsp->thinkdigit != 'x') {
|
|
/* If we found a digit, send it now */
|
|
dsp->f.frametype = AST_FRAME_DTMF_END;
|
|
dsp->f.subclass = dsp->thinkdigit;
|
|
dsp->thinkdigit = 0;
|
|
} else {
|
|
dsp->f.frametype = AST_FRAME_DTMF;
|
|
dsp->f.subclass = 'u';
|
|
dsp->thinkdigit = 0;
|
|
}
|
|
FIX_INF(af);
|
|
if (chan)
|
|
ast_queue_frame(chan, af);
|
|
ast_frfree(af);
|
|
ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
|
|
return &dsp->f;
|
|
}
|
|
}
|
|
} else if (dsp->digit_state.current_digits > 1 ||
|
|
(dsp->digit_state.current_digits == 1 && digit != dsp->digit_state.digits[0])) {
|
|
/* Since we basically generate DTMF_END frames we do it only when a digit
|
|
has finished. */
|
|
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_DTMF;
|
|
dsp->f.subclass = dsp->digit_state.digits[0];
|
|
memmove(dsp->digit_state.digits, dsp->digit_state.digits + 1, dsp->digit_state.current_digits);
|
|
dsp->digit_state.current_digits--;
|
|
FIX_INF(af);
|
|
if (chan)
|
|
ast_queue_frame(chan, af);
|
|
ast_frfree(af);
|
|
ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
|
|
return &dsp->f;
|
|
}
|
|
}
|
|
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
|
|
res = __ast_dsp_call_progress(dsp, shortdata, len);
|
|
if (res) {
|
|
switch (res) {
|
|
case AST_CONTROL_ANSWER:
|
|
case AST_CONTROL_BUSY:
|
|
case AST_CONTROL_RINGING:
|
|
case AST_CONTROL_CONGESTION:
|
|
case AST_CONTROL_HANGUP:
|
|
memset(&dsp->f, 0, sizeof(dsp->f));
|
|
dsp->f.frametype = AST_FRAME_CONTROL;
|
|
dsp->f.subclass = res;
|
|
dsp->f.src = "dsp_progress";
|
|
if (chan)
|
|
ast_queue_frame(chan, &dsp->f);
|
|
break;
|
|
default:
|
|
ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
|
|
}
|
|
}
|
|
}
|
|
FIX_INF(af);
|
|
return af;
|
|
}
|
|
|
|
static void ast_dsp_prog_reset(struct ast_dsp *dsp)
|
|
{
|
|
int max = 0;
|
|
int x;
|
|
|
|
dsp->gsamp_size = modes[dsp->progmode].size;
|
|
dsp->gsamps = 0;
|
|
for (x = 0; x < sizeof(modes[dsp->progmode].freqs) / sizeof(modes[dsp->progmode].freqs[0]); x++) {
|
|
if (modes[dsp->progmode].freqs[x]) {
|
|
goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size);
|
|
max = x + 1;
|
|
}
|
|
}
|
|
dsp->freqcount = max;
|
|
dsp->ringtimeout= 0;
|
|
}
|
|
|
|
struct ast_dsp *ast_dsp_new(void)
|
|
{
|
|
struct ast_dsp *dsp;
|
|
|
|
if ((dsp = ast_calloc(1, sizeof(*dsp)))) {
|
|
dsp->threshold = DEFAULT_THRESHOLD;
|
|
dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
|
|
dsp->busycount = DSP_HISTORY;
|
|
dsp->digitmode = DSP_DIGITMODE_DTMF;
|
|
dsp->faxmode = DSP_FAXMODE_DETECT_CNG;
|
|
/* Initialize digit detector */
|
|
ast_digit_detect_init(&dsp->digit_state, dsp->digitmode & DSP_DIGITMODE_MF);
|
|
/* Initialize initial DSP progress detect parameters */
|
|
ast_dsp_prog_reset(dsp);
|
|
/* Initialize fax detector */
|
|
ast_fax_detect_init(dsp);
|
|
}
|
|
return dsp;
|
|
}
|
|
|
|
void ast_dsp_set_features(struct ast_dsp *dsp, int features)
|
|
{
|
|
dsp->features = features;
|
|
}
|
|
|
|
void ast_dsp_free(struct ast_dsp *dsp)
|
|
{
|
|
if (ast_test_flag(&dsp->f, AST_FRFLAG_FROM_DSP)) {
|
|
/* If this flag is still set, that means that the dsp's destruction
|
|
* been torn down, while we still have a frame out there being used.
|
|
* When ast_frfree() gets called on that frame, this ast_trans_pvt
|
|
* will get destroyed, too. */
|
|
|
|
/* Set the magic flag to destroy the dsp when the frame is freed */
|
|
dsp->freqcount = -1;
|
|
|
|
return;
|
|
}
|
|
ast_free(dsp);
|
|
}
|
|
|
|
void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
|
|
{
|
|
dsp->threshold = threshold;
|
|
}
|
|
|
|
void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
|
|
{
|
|
if (cadences < 4)
|
|
cadences = 4;
|
|
if (cadences > DSP_HISTORY)
|
|
cadences = DSP_HISTORY;
|
|
dsp->busycount = cadences;
|
|
}
|
|
|
|
void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, int tonelength, int quietlength)
|
|
{
|
|
dsp->busy_tonelength = tonelength;
|
|
dsp->busy_quietlength = quietlength;
|
|
ast_debug(1, "dsp busy pattern set to %d,%d\n", tonelength, quietlength);
|
|
}
|
|
|
|
void ast_dsp_digitreset(struct ast_dsp *dsp)
|
|
{
|
|
int i;
|
|
|
|
dsp->thinkdigit = 0;
|
|
if (dsp->digitmode & DSP_DIGITMODE_MF) {
|
|
mf_detect_state_t *s = &dsp->digit_state.td.mf;
|
|
/* Reinitialise the detector for the next block */
|
|
for (i = 0; i < 6; i++) {
|
|
goertzel_reset(&s->tone_out[i]);
|
|
}
|
|
s->hits[4] = s->hits[3] = s->hits[2] = s->hits[1] = s->hits[0] = s->current_hit = 0;
|
|
s->current_sample = 0;
|
|
} else {
|
|
dtmf_detect_state_t *s = &dsp->digit_state.td.dtmf;
|
|
/* Reinitialise the detector for the next block */
|
|
for (i = 0; i < 4; i++) {
|
|
goertzel_reset(&s->row_out[i]);
|
|
goertzel_reset(&s->col_out[i]);
|
|
}
|
|
s->lasthit = s->current_hit = 0;
|
|
s->energy = 0.0;
|
|
s->current_sample = 0;
|
|
}
|
|
|
|
dsp->digit_state.digits[0] = '\0';
|
|
dsp->digit_state.current_digits = 0;
|
|
}
|
|
|
|
void ast_dsp_reset(struct ast_dsp *dsp)
|
|
{
|
|
int x;
|
|
|
|
dsp->totalsilence = 0;
|
|
dsp->gsamps = 0;
|
|
for (x=0;x<4;x++)
|
|
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
|
|
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
|
|
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
|
|
dsp->ringtimeout= 0;
|
|
}
|
|
|
|
int ast_dsp_digitmode(struct ast_dsp *dsp, int digitmode)
|
|
{
|
|
int new;
|
|
int old;
|
|
|
|
old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
|
|
new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
|
|
if (old != new) {
|
|
/* Must initialize structures if switching from MF to DTMF or vice-versa */
|
|
ast_digit_detect_init(&dsp->digit_state, new & DSP_DIGITMODE_MF);
|
|
}
|
|
dsp->digitmode = digitmode;
|
|
return 0;
|
|
}
|
|
|
|
int ast_dsp_set_faxmode(struct ast_dsp *dsp, int faxmode)
|
|
{
|
|
if (dsp->faxmode != faxmode) {
|
|
ast_fax_detect_init(dsp);
|
|
}
|
|
dsp->faxmode = faxmode;
|
|
return 0;
|
|
}
|
|
|
|
int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < ARRAY_LEN(aliases); x++) {
|
|
if (!strcasecmp(aliases[x].name, zone)) {
|
|
dsp->progmode = aliases[x].mode;
|
|
ast_dsp_prog_reset(dsp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int ast_dsp_get_tstate(struct ast_dsp *dsp)
|
|
{
|
|
return dsp->tstate;
|
|
}
|
|
|
|
int ast_dsp_get_tcount(struct ast_dsp *dsp)
|
|
{
|
|
return dsp->tcount;
|
|
}
|
|
|
|
void ast_dsp_frame_freed(struct ast_frame *fr)
|
|
{
|
|
struct ast_dsp *dsp;
|
|
|
|
ast_clear_flag(fr, AST_FRFLAG_FROM_DSP);
|
|
|
|
dsp = (struct ast_dsp *) (((char *) fr) - offsetof(struct ast_dsp, f));
|
|
|
|
if (dsp->freqcount != -1)
|
|
return;
|
|
|
|
ast_dsp_free(dsp);
|
|
}
|