Add iLBC codec

git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@852 65c4cc65-6c06-0410-ace0-fbb531ad65f3
1.0
Mark Spencer 22 years ago
parent dbe00ec2d2
commit c4da749362

@ -1,3 +1,4 @@
-- Add iLBC codec
Asterisk 0.4.0
-- Merge and edit Nick's FXO dial support
-- Reengineer SIP registration (outbound)

@ -234,6 +234,8 @@ int ast_best_codec(int fmts)
/* Okay, we're down to vocoders now, so pick GSM because it's small and easier to
translate and sounds pretty good */
AST_FORMAT_GSM,
/* iLBC is not too bad */
AST_FORMAT_ILBC,
/* Speex is free, but computationally more expensive than GSM */
AST_FORMAT_SPEEX,
/* Ick, LPC10 sounds terrible, but at least we have code for it, if you're tacky enough

@ -538,6 +538,9 @@ static int get_samples(struct ast_frame *f)
case AST_FORMAT_G723_1:
samples = 240 /* XXX Not necessarily true XXX */;
break;
case AST_FORMAT_ILBC:
samples = 240 * (f->datalen / 52);
break;
case AST_FORMAT_GSM:
samples = 160 * (f->datalen / 33);
break;

@ -20,6 +20,7 @@
MODG723=$(shell [ -f g723.1/coder.c ] && echo "codec_g723_1.so")
MODG723+=$(shell [ -f g723.1b/coder2.c ] && echo "codec_g723_1b.so")
MODSPEEX=$(shell [ -f /usr/include/speex.h ] || [ -f /usr/local/include/speex.h ] && echo "codec_speex.so")
MODILBC=$(shell [ -f ilbc/iLBC_decode.h ] && echo "codec_ilbc.so")
CFLAGS+=
LIBG723=g723.1/libg723.a
@ -30,8 +31,9 @@ LIBGSMT=$(shell if uname -m | grep -q 86; then echo gsm/lib/libgsm.a; fi)
LIBMP3=mp3/libmp3.a
LIBLPC10=lpc10/liblpc10.a
LIBSPEEX=-lspeex -lm
LIBILBC=ilbc/libilbc.a
CODECS+=$(MODG723) $(MODSPEEX) codec_gsm.so codec_mp3_d.so codec_lpc10.so \
CODECS+=$(MODG723) $(MODSPEEX) $(MODILBC) codec_gsm.so codec_mp3_d.so codec_lpc10.so \
codec_adpcm.so codec_ulaw.so codec_alaw.so codec_a_mu.so
all: $(CODECS)
@ -43,6 +45,7 @@ clean:
make -C gsm clean
make -C mp3 clean
make -C lpc10 clean
make -C ilbc clean
$(LIBG723):
make -C g723.1 all
@ -59,6 +62,12 @@ $(LIBMP3):
$(LIBLPC10):
make -C lpc10 all
$(LIBILBC):
make -C ilbc all
codec_ilbc.so: codec_ilbc.o $(LIBILBC)
$(CC) -shared -Xlinker -x -o $@ $< $(LIBILBC)
codec_g723_1.so : codec_g723_1.o $(LIBG723)
$(CC) -shared -Xlinker -x -o $@ $< $(LIBG723)

@ -0,0 +1,284 @@
/*
* Asterisk -- A telephony toolkit for Linux.
*
* Translate between signed linear and Internet Low Bitrate Codec
*
* The iLBC code is from The IETF code base and is copyright GlobalSound, AB
*
* Copyright (C) 1999, Mark Spencer
*
* Mark Spencer <markster@linux-support.net>
*
* This program is free software, distributed under the terms of
* the GNU General Public License
*/
#include <asterisk/lock.h>
#include <asterisk/translate.h>
#include <asterisk/module.h>
#include <asterisk/logger.h>
#include <asterisk/channel.h>
#include <pthread.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <netinet/in.h>
#include <string.h>
#include <stdio.h>
#include "ilbc/iLBC_encode.h"
#include "ilbc/iLBC_decode.h"
/* Sample frame data */
#include "slin_ilbc_ex.h"
#include "ilbc_slin_ex.h"
#define USE_ILBC_ENHANCER 0
static pthread_mutex_t localuser_lock = AST_MUTEX_INITIALIZER;
static int localusecnt=0;
static char *tdesc = "iLBC/PCM16 (signed linear) Codec Translator";
struct ast_translator_pvt {
iLBC_Enc_Inst_t enc;
iLBC_Dec_Inst_t dec;
struct ast_frame f;
/* Space to build offset */
char offset[AST_FRIENDLY_OFFSET];
/* Buffer for our outgoing frame */
short outbuf[8000];
/* Enough to store a full second */
short buf[8000];
int tail;
};
#define ilbc_coder_pvt ast_translator_pvt
static struct ast_translator_pvt *lintoilbc_new(void)
{
struct ilbc_coder_pvt *tmp;
tmp = malloc(sizeof(struct ilbc_coder_pvt));
if (tmp) {
initEncode(&tmp->enc);
tmp->tail = 0;
localusecnt++;
}
return tmp;
}
static struct ast_translator_pvt *ilbctolin_new(void)
{
struct ilbc_coder_pvt *tmp;
tmp = malloc(sizeof(struct ilbc_coder_pvt));
if (tmp) {
initDecode(&tmp->dec, USE_ILBC_ENHANCER);
tmp->tail = 0;
localusecnt++;
}
return tmp;
}
static struct ast_frame *lintoilbc_sample(void)
{
static struct ast_frame f;
f.frametype = AST_FRAME_VOICE;
f.subclass = AST_FORMAT_SLINEAR;
f.datalen = sizeof(slin_ilbc_ex);
/* Assume 8000 Hz */
f.samples = sizeof(slin_ilbc_ex)/2;
f.mallocd = 0;
f.offset = 0;
f.src = __PRETTY_FUNCTION__;
f.data = slin_ilbc_ex;
return &f;
}
static struct ast_frame *ilbctolin_sample(void)
{
static struct ast_frame f;
f.frametype = AST_FRAME_VOICE;
f.subclass = AST_FORMAT_ILBC;
f.datalen = sizeof(ilbc_slin_ex);
/* All frames are 30 ms long */
f.samples = 240;
f.mallocd = 0;
f.offset = 0;
f.src = __PRETTY_FUNCTION__;
f.data = ilbc_slin_ex;
return &f;
}
static struct ast_frame *ilbctolin_frameout(struct ast_translator_pvt *tmp)
{
if (!tmp->tail)
return NULL;
/* Signed linear is no particular frame size, so just send whatever
we have in the buffer in one lump sum */
tmp->f.frametype = AST_FRAME_VOICE;
tmp->f.subclass = AST_FORMAT_SLINEAR;
tmp->f.datalen = tmp->tail * 2;
/* Assume 8000 Hz */
tmp->f.samples = tmp->tail;
tmp->f.mallocd = 0;
tmp->f.offset = AST_FRIENDLY_OFFSET;
tmp->f.src = __PRETTY_FUNCTION__;
tmp->f.data = tmp->buf;
/* Reset tail pointer */
tmp->tail = 0;
return &tmp->f;
}
static int ilbctolin_framein(struct ast_translator_pvt *tmp, struct ast_frame *f)
{
/* Assuming there's space left, decode into the current buffer at
the tail location. Read in as many frames as there are */
int x,i;
float tmpf[240];
if (f->datalen % 52) {
ast_log(LOG_WARNING, "Huh? An ilbc frame that isn't a multiple of 52 bytes long from %s (%d)?\n", f->src, f->datalen);
return -1;
}
for (x=0;x<f->datalen;x+=52) {
if (tmp->tail + 240 < sizeof(tmp->buf)/2) {
iLBC_decode(tmpf, f->data + x, &tmp->dec, 1);
for (i=0;i<240;i++)
tmp->buf[tmp->tail + i] = tmpf[i];
tmp->tail+=240;
} else {
ast_log(LOG_WARNING, "Out of buffer space\n");
return -1;
}
}
return 0;
}
static int lintoilbc_framein(struct ast_translator_pvt *tmp, struct ast_frame *f)
{
/* Just add the frames to our stream */
/* XXX We should look at how old the rest of our stream is, and if it
is too old, then we should overwrite it entirely, otherwise we can
get artifacts of earlier talk that do not belong */
if (tmp->tail + f->datalen/2 < sizeof(tmp->buf) / 2) {
memcpy((tmp->buf + tmp->tail), f->data, f->datalen);
tmp->tail += f->datalen/2;
} else {
ast_log(LOG_WARNING, "Out of buffer space\n");
return -1;
}
return 0;
}
static struct ast_frame *lintoilbc_frameout(struct ast_translator_pvt *tmp)
{
int x=0,i;
float tmpf[240];
/* We can't work on anything less than a frame in size */
if (tmp->tail < 240)
return NULL;
tmp->f.frametype = AST_FRAME_VOICE;
tmp->f.subclass = AST_FORMAT_ILBC;
tmp->f.mallocd = 0;
tmp->f.offset = AST_FRIENDLY_OFFSET;
tmp->f.src = __PRETTY_FUNCTION__;
tmp->f.data = tmp->outbuf;
while(tmp->tail >= 240) {
if ((x+1) * 52 >= sizeof(tmp->outbuf)) {
ast_log(LOG_WARNING, "Out of buffer space\n");
break;
}
for (i=0;i<240;i++)
tmpf[i] = tmp->buf[i];
/* Encode a frame of data */
iLBC_encode(((unsigned char *)(tmp->outbuf)) + (x * 52), tmpf, &tmp->enc);
/* Assume 8000 Hz -- 20 ms */
tmp->tail -= 240;
/* Move the data at the end of the buffer to the front */
if (tmp->tail)
memmove(tmp->buf, tmp->buf + 240, tmp->tail * 2);
x++;
}
tmp->f.datalen = x * 52;
tmp->f.samples = x * 240;
#if 0
{
static int fd = -1;
if (fd == -1) {
fd = open("ilbc.out", O_CREAT|O_TRUNC|O_WRONLY, 0666);
write(fd, tmp->f.data, tmp->f.datalen);
close(fd);
}
}
#endif
return &tmp->f;
}
static void ilbc_destroy_stuff(struct ast_translator_pvt *pvt)
{
free(pvt);
localusecnt--;
}
static struct ast_translator ilbctolin =
{ "ilbctolin",
AST_FORMAT_ILBC, AST_FORMAT_SLINEAR,
ilbctolin_new,
ilbctolin_framein,
ilbctolin_frameout,
ilbc_destroy_stuff,
ilbctolin_sample
};
static struct ast_translator lintoilbc =
{ "lintoilbc",
AST_FORMAT_SLINEAR, AST_FORMAT_ILBC,
lintoilbc_new,
lintoilbc_framein,
lintoilbc_frameout,
ilbc_destroy_stuff,
lintoilbc_sample
};
int unload_module(void)
{
int res;
ast_pthread_mutex_lock(&localuser_lock);
res = ast_unregister_translator(&lintoilbc);
if (!res)
res = ast_unregister_translator(&ilbctolin);
if (localusecnt)
res = -1;
ast_pthread_mutex_unlock(&localuser_lock);
return res;
}
int load_module(void)
{
int res;
res=ast_register_translator(&ilbctolin);
if (!res)
res=ast_register_translator(&lintoilbc);
else
ast_unregister_translator(&ilbctolin);
return res;
}
char *description(void)
{
return tdesc;
}
int usecount(void)
{
int res;
STANDARD_USECOUNT(res);
return res;
}
char *key()
{
return ASTERISK_GPL_KEY;
}

@ -0,0 +1,100 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
FrameClassify.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "iLBC_define.h"
/*----------------------------------------------------------------*
* Classification of subframes to localize start state
*---------------------------------------------------------------*/
int FrameClassify( /* index to the max-energy sub frame */
float *residual /* (i) lpc residual signal */
){
float max_ssqEn, fssqEn[NSUB], bssqEn[NSUB], *pp;
int n, l, max_ssqEn_n;
const float ssqEn_win[NSUB-1]={(float)0.8,(float)0.9,
(float)1.0,(float)0.9,(float)0.8};
const float sampEn_win[5]={(float)1.0/(float)6.0,
(float)2.0/(float)6.0, (float)3.0/(float)6.0,
(float)4.0/(float)6.0, (float)5.0/(float)6.0};
/* init the front and back energies to zero */
memset(fssqEn, 0, NSUB*sizeof(float));
memset(bssqEn, 0, NSUB*sizeof(float));
/* Calculate front of first seqence */
n=0;
pp=residual;
for(l=0;l<5;l++){
fssqEn[n] += sampEn_win[l] * (*pp) * (*pp);
pp++;
}
for(l=5;l<SUBL;l++){
fssqEn[n] += (*pp) * (*pp);
pp++;
}
/* Calculate front and back of all middle sequences */
for(n=1;n<NSUB-1;n++) {
pp=residual+n*SUBL;
for(l=0;l<5;l++){
fssqEn[n] += sampEn_win[l] * (*pp) * (*pp);
bssqEn[n] += (*pp) * (*pp);
pp++;
}
for(l=5;l<SUBL-5;l++){
fssqEn[n] += (*pp) * (*pp);
bssqEn[n] += (*pp) * (*pp);
pp++;
}
for(l=SUBL-5;l<SUBL;l++){
fssqEn[n] += (*pp) * (*pp);
bssqEn[n] += sampEn_win[SUBL-l-1] * (*pp) * (*pp);
pp++;
}
}
/* Calculate back of last seqence */
n=NSUB-1;
pp=residual+n*SUBL;
for(l=0;l<SUBL-5;l++){
bssqEn[n] += (*pp) * (*pp);
pp++;
}
for(l=SUBL-5;l<SUBL;l++){
bssqEn[n] += sampEn_win[SUBL-l-1] * (*pp) * (*pp);
pp++;
}
/* find the index to the weighted 80 sample with
most energy */
max_ssqEn=(fssqEn[0]+bssqEn[1])*ssqEn_win[0];
max_ssqEn_n=1;
for (n=2;n<NSUB;n++) {
if ((fssqEn[n-1]+bssqEn[n])*ssqEn_win[n-1] > max_ssqEn) {
max_ssqEn=(fssqEn[n-1]+bssqEn[n]) *
ssqEn_win[n-1];
max_ssqEn_n=n;
}
}
return max_ssqEn_n;
}

@ -0,0 +1,23 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
FrameClassify.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_FRAMECLASSIFY_H
#define __iLBC_FRAMECLASSIFY_H
int FrameClassify( /* Index to the max-energy sub frame */
float *residual /* (i) lpc residual signal */
);
#endif

@ -0,0 +1,121 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
LPC_decode.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "helpfun.h"
#include "lsf.h"
#include "iLBC_define.h"
#include "constants.h"
/*----------------------------------------------------------------*
* interpolation of lsf coefficients for the decoder
*---------------------------------------------------------------*/
void LSFinterpolate2a_dec(
float *a, /* (o) lpc coefficients for a sub frame */
float *lsf1, /* (i) first lsf coefficient vector */
float *lsf2, /* (i) second lsf coefficient vector */
float coef, /* (i) interpolation weight */
int length /* (i) length of lsf vectors */
){
float lsftmp[LPC_FILTERORDER];
interpolate(lsftmp, lsf1, lsf2, coef, length);
lsf2a(a, lsftmp);
}
/*----------------------------------------------------------------*
* obtain dequantized lsf coefficients from quantization index
*---------------------------------------------------------------*/
void SimplelsfDEQ(
float *lsfdeq, /* (o) dequantized lsf coefficients */
int *index /* (i) quantization index */
){
int i,j, pos, cb_pos;
/* decode first LSF */
pos = 0;
cb_pos = 0;
for (i = 0; i < LSF_NSPLIT; i++) {
for (j = 0; j < dim_lsfCbTbl[i]; j++) {
lsfdeq[pos + j] = lsfCbTbl[cb_pos +
(long)(index[i])*dim_lsfCbTbl[i] + j];
}
pos += dim_lsfCbTbl[i];
cb_pos += size_lsfCbTbl[i]*dim_lsfCbTbl[i];
}
/* decode last LSF */
pos = 0;
cb_pos = 0;
for (i = 0; i < LSF_NSPLIT; i++) {
for (j = 0; j < dim_lsfCbTbl[i]; j++) {
lsfdeq[LPC_FILTERORDER + pos + j] = lsfCbTbl[cb_pos +
(long)(index[LSF_NSPLIT + i])*dim_lsfCbTbl[i] + j];
}
pos += dim_lsfCbTbl[i];
cb_pos += size_lsfCbTbl[i]*dim_lsfCbTbl[i];
}
}
/*----------------------------------------------------------------*
* obtain synthesis and weighting filters form lsf coefficients
*---------------------------------------------------------------*/
void DecoderInterpolateLSF(
float *syntdenum, /* (o) synthesis filter coefficients */
float *weightdenum, /* (o) weighting denumerator
coefficients */
float *lsfdeq, /* (i) dequantized lsf coefficients */
int length, /* (i) length of lsf coefficient vector */
iLBC_Dec_Inst_t *iLBCdec_inst
/* (i) the decoder state structure */
){
int i, pos, lp_length;
float lp[LPC_FILTERORDER + 1], *lsfdeq2;
lsfdeq2 = lsfdeq + length;
lp_length = length + 1;
/* subframe 1: Interpolation between old and first */
LSFinterpolate2a_dec(lp, (*iLBCdec_inst).lsfdeqold, lsfdeq,
lsf_weightTbl[0], length);
memcpy(syntdenum,lp,lp_length*sizeof(float));
bwexpand(weightdenum, lp, LPC_CHIRP_WEIGHTDENUM, lp_length);
/* subframes 2 to 6: interpolation between first and last
LSF */
pos = lp_length;
for (i = 1; i < 6; i++) {
LSFinterpolate2a_dec(lp, lsfdeq, lsfdeq2, lsf_weightTbl[i],
length);
memcpy(syntdenum + pos,lp,lp_length*sizeof(float));
bwexpand(weightdenum + pos, lp,
LPC_CHIRP_WEIGHTDENUM, lp_length);
pos += lp_length;
}
/* update memory */
memcpy((*iLBCdec_inst).lsfdeqold, lsfdeq2, length*sizeof(float));
}

@ -0,0 +1,42 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
LPC_decode.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_LPC_DECODE_H
#define __iLBC_LPC_DECODE_H
void LSFinterpolate2a_dec(
float *a, /* (o) lpc coefficients for a sub frame */
float *lsf1, /* (i) first lsf coefficient vector */
float *lsf2, /* (i) second lsf coefficient vector */
float coef, /* (i) interpolation weight */
int length /* (i) length of lsf vectors */
);
void SimplelsfDEQ(
float *lsfdeq, /* (o) dequantized lsf coefficients */
int *index /* (i) quantization index */
);
void DecoderInterpolateLSF(
float *syntdenum, /* (o) synthesis filter coefficients */
float *weightdenum, /* (o) weighting denumerator
coefficients */
float *lsfdeq, /* (i) dequantized lsf coefficients */
int length, /* (i) length of lsf coefficient vector */
iLBC_Dec_Inst_t *iLBCdec_inst
/* (i) the decoder state structure */
);
#endif

@ -0,0 +1,184 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
LPCencode.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <string.h>
#include "iLBC_define.h"
#include "helpfun.h"
#include "lsf.h"
#include "constants.h"
/*----------------------------------------------------------------*
* lpc analysis (subrutine to LPCencode)
*---------------------------------------------------------------*/
void SimpleAnalysis(
float *lsf, /* (o) lsf coefficients */
float *data, /* (i) new data vector */
float *lpc_buffer /* (i) buffer containing old data */
){
int k, is;
float temp[BLOCKL], lp[LPC_FILTERORDER + 1];
float lp2[LPC_FILTERORDER + 1];
float r[LPC_FILTERORDER + 1];
memcpy(lpc_buffer+LPC_LOOKBACK,data,BLOCKL*sizeof(float));
/* No lookahead, last window is asymmetric */
for (k = 0; k < LPC_N; k++) {
is = LPC_LOOKBACK;
if (k < (LPC_N - 1)) {
window(temp, lpc_winTbl, lpc_buffer, BLOCKL);
} else {
window(temp, lpc_asymwinTbl, lpc_buffer + is, BLOCKL);
}
autocorr(r, temp, BLOCKL, LPC_FILTERORDER);
window(r, r, lpc_lagwinTbl, LPC_FILTERORDER + 1);
levdurb(lp, temp, r, LPC_FILTERORDER);
bwexpand(lp2, lp, LPC_CHIRP_SYNTDENUM, LPC_FILTERORDER+1);
a2lsf(lsf + k*LPC_FILTERORDER, lp2);
}
memcpy(lpc_buffer, lpc_buffer+BLOCKL,
LPC_LOOKBACK*sizeof(float));
}
/*----------------------------------------------------------------*
* lsf interpolator and conversion from lsf to a coefficients
* (subrutine to SimpleInterpolateLSF)
*---------------------------------------------------------------*/
void LSFinterpolate2a_enc(
float *a, /* (o) lpc coefficients */
float *lsf1,/* (i) first set of lsf coefficients */
float *lsf2,/* (i) second set of lsf coefficients */
float coef, /* (i) weighting coefficient to use between lsf1
and lsf2 */
long length /* (i) length of coefficient vectors */
){
float lsftmp[LPC_FILTERORDER];
interpolate(lsftmp, lsf1, lsf2, coef, length);
lsf2a(a, lsftmp);
}
/*----------------------------------------------------------------*
* lsf interpolator (subrutine to LPCencode)
*---------------------------------------------------------------*/
void SimpleInterpolateLSF(
float *syntdenum, /* (o) the synthesis filter denominator
resulting from the quantized
interpolated lsf */
float *weightdenum, /* (o) the weighting filter denominator
resulting from the unquantized
interpolated lsf */
float *lsf, /* (i) the unquantized lsf coefficients */
float *lsfdeq, /* (i) the dequantized lsf coefficients */
float *lsfold, /* (i) the unquantized lsf coefficients of
the previous signal frame */
float *lsfdeqold, /* (i) the dequantized lsf coefficients of
the previous signal frame */
int length /* (i) should equate FILTERORDER */
){
int i, pos, lp_length;
float lp[LPC_FILTERORDER + 1], *lsf2, *lsfdeq2;
lsf2 = lsf + length;
lsfdeq2 = lsfdeq + length;
lp_length = length + 1;
/* subframe 1: Interpolation between old and first set of
lsf coefficients */
LSFinterpolate2a_enc(lp, lsfdeqold, lsfdeq,
lsf_weightTbl[0], length);
memcpy(syntdenum,lp,lp_length*sizeof(float));
LSFinterpolate2a_enc(lp, lsfold, lsf, lsf_weightTbl[0], length);
bwexpand(weightdenum, lp, LPC_CHIRP_WEIGHTDENUM, lp_length);
/* subframe 2 to 6: Interpolation between first and second
set of lsf coefficients */
pos = lp_length;
for (i = 1; i < NSUB; i++) {
LSFinterpolate2a_enc(lp, lsfdeq, lsfdeq2,
lsf_weightTbl[i], length);
memcpy(syntdenum + pos,lp,lp_length*sizeof(float));
LSFinterpolate2a_enc(lp, lsf, lsf2,
lsf_weightTbl[i], length);
bwexpand(weightdenum + pos, lp,
LPC_CHIRP_WEIGHTDENUM, lp_length);
pos += lp_length;
}
/* update memory */
memcpy(lsfold, lsf2, length*sizeof(float));
memcpy(lsfdeqold, lsfdeq2, length*sizeof(float));
}
/*----------------------------------------------------------------*
* lsf quantizer (subrutine to LPCencode)
*---------------------------------------------------------------*/
void SimplelsfQ(
float *lsfdeq, /* (o) dequantized lsf coefficients
(dimension FILTERORDER) */
int *index, /* (o) quantization index */
float *lsf /* (i) the lsf coefficient vector to be
quantized (dimension FILTERORDER ) */
){
/* Quantize first LSF with memoryless split VQ */
SplitVQ(lsfdeq, index, lsf, lsfCbTbl, LSF_NSPLIT,
dim_lsfCbTbl, size_lsfCbTbl);
/* Quantize second LSF with memoryless split VQ */
SplitVQ(lsfdeq + LPC_FILTERORDER, index + LSF_NSPLIT,
lsf + LPC_FILTERORDER, lsfCbTbl, LSF_NSPLIT,
dim_lsfCbTbl, size_lsfCbTbl);
}
/*----------------------------------------------------------------*
* lpc encoder
*---------------------------------------------------------------*/
void LPCencode(
float *syntdenum, /* (i/o) synthesis filter coefficients
before/after encoding */
float *weightdenum, /* (i/o) weighting denumerator coefficients
before/after encoding */
int *lsf_index, /* (o) lsf quantization index */
float *data, /* (i) lsf coefficients to quantize */
iLBC_Enc_Inst_t *iLBCenc_inst
/* (i/o) the encoder state structure */
){
float lsf[LPC_FILTERORDER * LPC_N];
float lsfdeq[LPC_FILTERORDER * LPC_N];
int change=0;
SimpleAnalysis(lsf, data, (*iLBCenc_inst).lpc_buffer);
SimplelsfQ(lsfdeq, lsf_index, lsf);
change=LSF_check(lsfdeq, LPC_FILTERORDER, LPC_N);
SimpleInterpolateLSF(syntdenum, weightdenum,
lsf, lsfdeq, (*iLBCenc_inst).lsfold,
(*iLBCenc_inst).lsfdeqold, LPC_FILTERORDER);
}

@ -0,0 +1,30 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
LPCencode.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_LPCENCOD_H
#define __iLBC_LPCENCOD_H
void LPCencode(
float *syntdenum, /* (i/o) synthesis filter coefficients
before/after encoding */
float *weightdenum, /* (i/o) weighting denumerator coefficients
before/after encoding */
int *lsf_index, /* (o) lsf quantization index */
float *data, /* (i) lsf coefficients to quantize */
iLBC_Enc_Inst_t *iLBCenc_inst
/* (i/o) the encoder state structure */
);
#endif

@ -0,0 +1,19 @@
LIB=libilbc.a
OBJS= anaFilter.o iCBSearch.o packing.o \
constants.o gainquant.o iLBC_decode.o StateConstructW.o \
createCB.o getCBvec.o iLBC_encode.o StateSearchW.o doCPLC.o \
helpfun.o syntFilter.o enhancer.o hpInput.o LPCdecode.o \
filter.o hpOutput.o LPCencode.o FrameClassify.o iCBConstruct.o lsf.o
all: $(LIB)
$(LIB): $(OBJS)
ar cr $(LIB) $(OBJS)
clean:
rm -f $(LIB) *.o
install:

@ -0,0 +1,72 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
StateConstructW.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
#include "constants.h"
#include "filter.h"
/*----------------------------------------------------------------*
* decoding of the start state
*---------------------------------------------------------------*/
void StateConstructW(
int idxForMax, /* (i) 6-bit index for the quantization of
max amplitude */
int *idxVec, /* (i) vector of quantization indexes */
float *syntDenum, /* (i) synthesis filter denumerator */
float *out, /* (o) the decoded state vector */
int len /* (i) length of a state vector */
){
float maxVal, tmpbuf[LPC_FILTERORDER+2*STATE_LEN], *tmp,
numerator[LPC_FILTERORDER+1];
float foutbuf[LPC_FILTERORDER+2*STATE_LEN], *fout;
int k,tmpi;
/* decoding of the maximum value */
maxVal = state_frgqTbl[idxForMax];
maxVal = (float)pow(10,maxVal)/(float)4.5;
/* initialization of buffers and coefficients */
memset(tmpbuf, 0, LPC_FILTERORDER*sizeof(float));
memset(foutbuf, 0, LPC_FILTERORDER*sizeof(float));
for(k=0; k<LPC_FILTERORDER; k++){
numerator[k]=syntDenum[LPC_FILTERORDER-k];
}
numerator[LPC_FILTERORDER]=syntDenum[0];
tmp = &tmpbuf[LPC_FILTERORDER];
fout = &foutbuf[LPC_FILTERORDER];
/* decoding of the sample values */
for(k=0; k<len; k++){
tmpi = len-1-k;
/* maxVal = 1/scal */
tmp[k] = maxVal*state_sq3Tbl[idxVec[tmpi]];
}
/* circular convolution with all-pass filter */
memset(tmp+len, 0, len*sizeof(float));
ZeroPoleFilter(tmp, numerator, syntDenum, 2*len,
LPC_FILTERORDER, fout);
for(k=0;k<len;k++){
out[k] = fout[len-1-k]+fout[2*len-1-k];
}
}

@ -0,0 +1,28 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
StateConstructW.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_STATECONSTRUCTW_H
#define __iLBC_STATECONSTRUCTW_H
void StateConstructW(
int idxForMax, /* (i) 6-bit index for the quantization of
max amplitude */
int *idxVec, /* (i) vector of quantization indexes */
float *syntDenum, /* (i) synthesis filter denumerator */
float *out, /* (o) the decoded state vector */
int len /* (i) length of a state vector */
);
#endif

@ -0,0 +1,177 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
StateSearchW.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
#include "constants.h"
#include "filter.h"
#include "helpfun.h"
/*----------------------------------------------------------------*
* predictive noise shaping encoding of scaled start state
* (subrutine for StateSearchW)
*---------------------------------------------------------------*/
void AbsQuantW(
float *in, /* (i) vector to encode */
float *syntDenum, /* (i) denominator of synthesis filter */
float *weightDenum, /* (i) denominator of weighting filter */
int *out, /* (o) vector of quantizer indexes */
int len, /* (i) length of vector to encode and
vector of quantizer indexes */
int state_first /* (i) position of start state in the
80 vec */
){
float *syntOut, syntOutBuf[LPC_FILTERORDER+STATE_SHORT_LEN];
float toQ, xq;
int n;
int index;
/* initialization of buffer for filtering */
memset(syntOutBuf, 0, LPC_FILTERORDER*sizeof(float));
/* initialization of pointer for filtering */
syntOut = &syntOutBuf[LPC_FILTERORDER];
/* synthesis and weighting filters on input */
if (state_first) {
AllPoleFilter (in, weightDenum, SUBL, LPC_FILTERORDER);
} else {
AllPoleFilter (in, weightDenum, STATE_SHORT_LEN-SUBL,
LPC_FILTERORDER);
}
/* encoding loop */
for(n=0;n<len;n++){
/* time update of filter coefficients */
if ((state_first)&&(n==SUBL)){
syntDenum += (LPC_FILTERORDER+1);
weightDenum += (LPC_FILTERORDER+1);
/* synthesis and weighting filters on input */
AllPoleFilter (&in[n], weightDenum, len-n,
LPC_FILTERORDER);
} else if ((state_first==0)&&(n==(STATE_SHORT_LEN-SUBL))) {
syntDenum += (LPC_FILTERORDER+1);
weightDenum += (LPC_FILTERORDER+1);
/* synthesis and weighting filters on input */
AllPoleFilter (&in[n], weightDenum, len-n,
LPC_FILTERORDER);
}
/* prediction of synthesized and weighted input */
syntOut[n] = 0.0;
AllPoleFilter (&syntOut[n], weightDenum, 1, LPC_FILTERORDER);
/* quantization */
toQ = in[n]-syntOut[n];
sort_sq(&xq, &index, toQ, state_sq3Tbl, 8);
out[n]=index;
syntOut[n] = state_sq3Tbl[out[n]];
/* update of the prediction filter */
AllPoleFilter(&syntOut[n], weightDenum, 1, LPC_FILTERORDER);
}
}
/*----------------------------------------------------------------*
* encoding of start state
*---------------------------------------------------------------*/
void StateSearchW(
float *residual,/* (i) target residual vector */
float *syntDenum, /* (i) lpc synthesis filter */
float *weightDenum, /* (i) weighting filter denuminator */
int *idxForMax, /* (o) quantizer index for maximum
amplitude */
int *idxVec, /* (o) vector of quantization indexes */
int len, /* (i) length of all vectors */
int state_first /* (i) position of start state in the
80 vec */
){
float dtmp, maxVal, tmpbuf[LPC_FILTERORDER+2*STATE_SHORT_LEN];
float *tmp, numerator[1+LPC_FILTERORDER];
float foutbuf[LPC_FILTERORDER+2*STATE_SHORT_LEN], *fout;
int k;
float qmax, scal;
/* initialization of buffers and filter coefficients */
memset(tmpbuf, 0, LPC_FILTERORDER*sizeof(float));
memset(foutbuf, 0, LPC_FILTERORDER*sizeof(float));
for(k=0; k<LPC_FILTERORDER; k++){
numerator[k]=syntDenum[LPC_FILTERORDER-k];
}
numerator[LPC_FILTERORDER]=syntDenum[0];
tmp = &tmpbuf[LPC_FILTERORDER];
fout = &foutbuf[LPC_FILTERORDER];
/* circular convolution with the all-pass filter */
memcpy(tmp, residual, len*sizeof(float));
memset(tmp+len, 0, len*sizeof(float));
ZeroPoleFilter(tmp, numerator, syntDenum, 2*len,
LPC_FILTERORDER, fout);
for(k=0;k<len;k++){
fout[k] += fout[k+len];
}
/* identification of the maximum amplitude value */
maxVal = fout[0];
for(k=1; k<len; k++){
if(fout[k]*fout[k] > maxVal*maxVal){
maxVal = fout[k];
}
}
maxVal=(float)fabs(maxVal);
/* encoding of the maximum amplitude value */
if(maxVal < 10.0){
maxVal = 10.0;
}
maxVal = (float)log10(maxVal);
sort_sq(&dtmp, idxForMax, maxVal, state_frgqTbl, 64);
/* decoding of the maximum amplitude representation value,
and corresponding scaling of start state */
maxVal=state_frgqTbl[*idxForMax];
qmax = (float)pow(10,maxVal);
scal = (float)(4.5)/qmax;
for(k=0;k<len;k++){
fout[k] *= scal;
}
/* predictive noise shaping encoding of scaled start state */
AbsQuantW(fout,syntDenum,weightDenum,idxVec, len, state_first);
}

@ -0,0 +1,43 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
StateSearchW.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_STATESEARCHW_H
#define __iLBC_STATESEARCHW_H
void AbsQuantW(
float *in, /* (i) vector to encode */
float *syntDenum, /* (i) denominator of synthesis filter */
float *weightDenum, /* (i) denominator of weighting filter */
int *out, /* (o) vector of quantizer indexes */
int len, /* (i) length of vector to encode and
vector of quantizer indexes */
int state_first /* (i) position of start state in the
80 vec */
);
void StateSearchW(
float *residual,/* (i) target residual vector */
float *syntDenum, /* (i) lpc synthesis filter */
float *weightDenum, /* (i) weighting filter denuminator */
int *idxForMax, /* (o) quantizer index for maximum
amplitude */
int *idxVec, /* (o) vector of quantization indexes */
int len, /* (i) length of all vectors */
int state_first /* (i) position of start state in the
80 vec */
);
#endif

@ -0,0 +1,68 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
anaFilter.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <string.h>
#include "iLBC_define.h"
/*----------------------------------------------------------------*
* LP analysis filter.
*---------------------------------------------------------------*/
void anaFilter(
float *In, /* (i) Signal to be filtered */
float *a, /* (i) LP parameters */
int len,/* (i) Length of signal */
float *Out, /* (o) Filtered signal */
float *mem /* (i/o) Filter state */
){
int i, j;
float *po, *pi, *pm, *pa;
po = Out;
/* Filter first part using memory from past */
for (i=0;i<LPC_FILTERORDER;i++) {
pi = &In[i];
pm = &mem[LPC_FILTERORDER-1];
pa = a;
*po=0.0;
for (j=0;j<=i;j++) {
*po+=(*pa++)*(*pi--);
}
for (j=i+1;j<LPC_FILTERORDER+1;j++) {
*po+=(*pa++)*(*pm--);
}
po++;
}
/* Filter last part where the state is entierly
in the input vector */
for (i=LPC_FILTERORDER;i<len;i++) {
pi = &In[i];
pa = a;
*po=0.0;
for (j=0;j<LPC_FILTERORDER+1;j++) {
*po+=(*pa++)*(*pi--);
}
po++;
}
/* Update state vector */
memcpy(mem, &In[len-LPC_FILTERORDER],
LPC_FILTERORDER*sizeof(float));
}

@ -0,0 +1,27 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
anaFilter.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_ANAFILTER_H
#define __iLBC_ANAFILTER_H
void anaFilter(
float *In, /* (i) Signal to be filtered */
float *a, /* (i) LP parameters */
int len,/* (i) Length of signal */
float *Out, /* (o) Filtered signal */
float *mem /* (i/o) Filter state */
);
#endif

@ -0,0 +1,685 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
constants.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "iLBC_define.h"
/* bit allocation */
int lsf_bitsTbl[6]={6,7,7,6,7,7};
int start_bitsTbl=3;
int scale_bitsTbl=6;
int state_bitsTbl=3;
int cb_bitsTbl[5][CB_NSTAGES]={{7,7,7},{8,7,7},
{8,8,8},{8,8,8},{8,8,8}};
int search_rangeTbl[5][CB_NSTAGES]={{58,58,58}, {108,44,44},
{108,108,108}, {108,108,108}, {108,108,108}};
int gain_bitsTbl[3]={5,4,3};
/* ULP bit allocation */
int ulp_lsf_bitsTbl[6][ULP_CLASSES+2]={
{6,0,0,0,0},{7,0,0,0,0},
{7,0,0,0,0},{6,0,0,0,0},
{7,0,0,0,0},{7,0,0,0,0}};
int ulp_start_bitsTbl[ULP_CLASSES+2]={3,0,0,0,0};
int ulp_startfirst_bitsTbl[ULP_CLASSES+2]={1,0,0,0,0};
int ulp_scale_bitsTbl[ULP_CLASSES+2]={6,0,0,0,0};
int ulp_state_bitsTbl[ULP_CLASSES+2]={0,1,2,0,0};
int ulp_extra_cb_indexTbl[CB_NSTAGES][ULP_CLASSES+2]={
{4,2,1,0,0},{0,0,7,0,0},{0,0,7,0,0}};
int ulp_extra_cb_gainTbl[CB_NSTAGES][ULP_CLASSES+2]={
{1,1,3,0,0},{1,1,2,0,0},{0,0,3,0,0}};
int ulp_cb_indexTbl[NASUB][CB_NSTAGES][ULP_CLASSES+2]={
{{6,1,1,0,0},{0,0,7,0,0},{0,0,7,0,0}},
{{0,7,1,0,0},{0,0,8,0,0},{0,0,8,0,0}},
{{0,7,1,0,0},{0,0,8,0,0},{0,0,8,0,0}},
{{0,7,1,0,0},{0,0,8,0,0},{0,0,8,0,0}}};
int ulp_cb_gainTbl[NASUB][CB_NSTAGES][ULP_CLASSES+2]={
{{1,2,2,0,0},{1,2,1,0,0},{0,0,3,0,0}},
{{0,2,3,0,0},{0,2,2,0,0},{0,0,3,0,0}},
{{0,1,4,0,0},{0,1,3,0,0},{0,0,3,0,0}},
{{0,1,4,0,0},{0,1,3,0,0},{0,0,3,0,0}}};
/* HP Filters */
float hpi_zero_coefsTbl[3] = {
(float)0.92727436, (float)-1.8544941, (float)0.92727436
};
float hpi_pole_coefsTbl[3] = {
(float)1.0, (float)-1.9059465, (float)0.9114024
};
float hpo_zero_coefsTbl[3] = {
(float)0.93980581, (float)-1.8795834, (float)0.93980581
};
float hpo_pole_coefsTbl[3] = {
(float)1.0, (float)-1.9330735, (float)0.93589199
};
/* LP Filter */
float lpFilt_coefsTbl[FILTERORDER_DS]={
(float)-0.066650, (float)0.125000, (float)0.316650,
(float)0.414063, (float)0.316650,
(float)0.125000, (float)-0.066650
};
/* State quantization tables */
float state_sq3Tbl[8] = {
(float)-3.719849, (float)-2.177490, (float)-1.130005,
(float)-0.309692, (float)0.444214, (float)1.329712,
(float)2.436279, (float)3.983887
};
float state_frgqTbl[64] = {
(float)1.000085, (float)1.071695, (float)1.140395,
(float)1.206868, (float)1.277188, (float)1.351503,
(float)1.429380, (float)1.500727, (float)1.569049,
(float)1.639599, (float)1.707071, (float)1.781531,
(float)1.840799, (float)1.901550, (float)1.956695,
(float)2.006750, (float)2.055474, (float)2.102787,
(float)2.142819, (float)2.183592, (float)2.217962,
(float)2.257177, (float)2.295739, (float)2.332967,
(float)2.369248, (float)2.402792, (float)2.435080,
(float)2.468598, (float)2.503394, (float)2.539284,
(float)2.572944, (float)2.605036, (float)2.636331,
(float)2.668939, (float)2.698780, (float)2.729101,
(float)2.759786, (float)2.789834, (float)2.818679,
(float)2.848074, (float)2.877470, (float)2.906899,
(float)2.936655, (float)2.967804, (float)3.000115,
(float)3.033367, (float)3.066355, (float)3.104231,
(float)3.141499, (float)3.183012, (float)3.222952,
(float)3.265433, (float)3.308441, (float)3.350823,
(float)3.395275, (float)3.442793, (float)3.490801,
(float)3.542514, (float)3.604064, (float)3.666050,
(float)3.740994, (float)3.830749, (float)3.938770,
(float)4.101764
};
/* CB tables */
int stMemLTbl=85;
int memLfTbl[NASUB]={147,147,147,147};
/* expansion filter(s) */
float cbfiltersTbl[CB_FILTERLEN]={
(float)-0.033691, (float)0.083740, (float)-0.144043,
(float)0.713379, (float)0.806152, (float)-0.184326,
(float)0.108887, (float)-0.034180};
/* Gain Quantization */
float gain_sq3Tbl[8]={
(float)-1.000000, (float)-0.659973, (float)-0.330017,
(float)0.000000, (float)0.250000, (float)0.500000,
(float)0.750000, (float)1.00000};
float gain_sq4Tbl[16]={
(float)-1.049988, (float)-0.900024, (float)-0.750000,
(float)-0.599976, (float)-0.450012, (float)-0.299988,
(float)-0.150024, (float)0.000000, (float)0.150024,
(float)0.299988, (float)0.450012, (float)0.599976,
(float)0.750000, (float)0.900024, (float)1.049988,
(float)1.200012};
float gain_sq5Tbl[32]={
(float)0.037476, (float)0.075012, (float)0.112488,
(float)0.150024, (float)0.187500, (float)0.224976,
(float)0.262512, (float)0.299988, (float)0.337524,
(float)0.375000, (float)0.412476, (float)0.450012,
(float)0.487488, (float)0.525024, (float)0.562500,
(float)0.599976, (float)0.637512, (float)0.674988,
(float)0.712524, (float)0.750000, (float)0.787476,
(float)0.825012, (float)0.862488, (float)0.900024,
(float)0.937500, (float)0.974976, (float)1.012512,
(float)1.049988, (float)1.087524, (float)1.125000,
(float)1.162476, (float)1.200012};
/* Enhancer - Upsamling a factor 4 (ENH_UPS0 = 4) */
float polyphaserTbl[ENH_UPS0*(2*ENH_FL0+1)]={
(float)0.000000, (float)0.000000, (float)0.000000,
(float)1.000000,
(float)0.000000, (float)0.000000, (float)0.000000,
(float)0.015625, (float)-0.076904, (float)0.288330,
(float)0.862061,
(float)-0.106445, (float)0.018799, (float)-0.015625,
(float)0.023682, (float)-0.124268, (float)0.601563,
(float)0.601563,
(float)-0.124268, (float)0.023682, (float)-0.023682,
(float)0.018799, (float)-0.106445, (float)0.862061,
(float)0.288330,
(float)-0.076904, (float)0.015625, (float)-0.018799};
float enh_plocsTbl[ENH_NBLOCKS_TOT] = {(float)40.0, (float)120.0,
(float)200.0, (float)280.0, (float)360.0,
(float)440.0, (float)520.0, (float)600.0};
/* LPC analysis and quantization */
int dim_lsfCbTbl[LSF_NSPLIT] = {3, 3, 4};
int size_lsfCbTbl[LSF_NSPLIT] = {64,128,128};
float lsfmeanTbl[LPC_FILTERORDER] = {
(float)0.281738, (float)0.445801, (float)0.663330,
(float)0.962524, (float)1.251831, (float)1.533081,
(float)1.850586, (float)2.137817, (float)2.481445,
(float)2.777344};
float lsf_weightTbl[6] = {(float)(1.0/2.0), (float)1.0,
(float)(2.0/3.0),
(float)(1.0/3.0), (float)0.0, (float)0.0};
/* Hanning LPC window */
float lpc_winTbl[BLOCKL]={
(float)0.000183, (float)0.000671, (float)0.001526,
(float)0.002716, (float)0.004242, (float)0.006104,
(float)0.008301, (float)0.010834, (float)0.013702,
(float)0.016907, (float)0.020416, (float)0.024261,
(float)0.028442, (float)0.032928, (float)0.037750,
(float)0.042877, (float)0.048309, (float)0.054047,
(float)0.060089, (float)0.066437, (float)0.073090,
(float)0.080017, (float)0.087219, (float)0.094727,
(float)0.102509, (float)0.110535, (float)0.118835,
(float)0.127411, (float)0.136230, (float)0.145294,
(float)0.154602, (float)0.164154, (float)0.173920,
(float)0.183899, (float)0.194122, (float)0.204529,
(float)0.215149, (float)0.225952, (float)0.236938,
(float)0.248108, (float)0.259460, (float)0.270966,
(float)0.282654, (float)0.294464, (float)0.306396,
(float)0.318481, (float)0.330688, (float)0.343018,
(float)0.355438, (float)0.367981, (float)0.380585,
(float)0.393280, (float)0.406067, (float)0.418884,
(float)0.431763, (float)0.444702, (float)0.457672,
(float)0.470673, (float)0.483704, (float)0.496735,
(float)0.509766, (float)0.522797, (float)0.535828,
(float)0.548798, (float)0.561768, (float)0.574677,
(float)0.587524, (float)0.600342, (float)0.613068,
(float)0.625732, (float)0.638306, (float)0.650787,
(float)0.663147, (float)0.675415, (float)0.687561,
(float)0.699585, (float)0.711487, (float)0.723206,
(float)0.734802, (float)0.746216, (float)0.757477,
(float)0.768585, (float)0.779480, (float)0.790192,
(float)0.800720, (float)0.811005, (float)0.821106,
(float)0.830994, (float)0.840668, (float)0.850067,
(float)0.859253, (float)0.868225, (float)0.876892,
(float)0.885345, (float)0.893524, (float)0.901428,
(float)0.909058, (float)0.916412, (float)0.923492,
(float)0.930267, (float)0.936768, (float)0.942963,
(float)0.948853, (float)0.954437, (float)0.959717,
(float)0.964691, (float)0.969360, (float)0.973694,
(float)0.977692, (float)0.981384, (float)0.984741,
(float)0.987762, (float)0.990479, (float)0.992828,
(float)0.994873, (float)0.996552, (float)0.997925,
(float)0.998932, (float)0.999603, (float)0.999969,
(float)0.999969, (float)0.999603, (float)0.998932,
(float)0.997925, (float)0.996552, (float)0.994873,
(float)0.992828, (float)0.990479, (float)0.987762,
(float)0.984741, (float)0.981384, (float)0.977692,
(float)0.973694, (float)0.969360, (float)0.964691,
(float)0.959717, (float)0.954437, (float)0.948853,
(float)0.942963, (float)0.936768, (float)0.930267,
(float)0.923492, (float)0.916412, (float)0.909058,
(float)0.901428, (float)0.893524, (float)0.885345,
(float)0.876892, (float)0.868225, (float)0.859253,
(float)0.850067, (float)0.840668, (float)0.830994,
(float)0.821106, (float)0.811005, (float)0.800720,
(float)0.790192, (float)0.779480, (float)0.768585,
(float)0.757477, (float)0.746216, (float)0.734802,
(float)0.723206, (float)0.711487, (float)0.699585,
(float)0.687561, (float)0.675415, (float)0.663147,
(float)0.650787, (float)0.638306, (float)0.625732,
(float)0.613068, (float)0.600342, (float)0.587524,
(float)0.574677, (float)0.561768, (float)0.548798,
(float)0.535828, (float)0.522797, (float)0.509766,
(float)0.496735, (float)0.483704, (float)0.470673,
(float)0.457672, (float)0.444702, (float)0.431763,
(float)0.418884, (float)0.406067, (float)0.393280,
(float)0.380585, (float)0.367981, (float)0.355438,
(float)0.343018, (float)0.330688, (float)0.318481,
(float)0.306396, (float)0.294464, (float)0.282654,
(float)0.270966, (float)0.259460, (float)0.248108,
(float)0.236938, (float)0.225952, (float)0.215149,
(float)0.204529, (float)0.194122, (float)0.183899,
(float)0.173920, (float)0.164154, (float)0.154602,
(float)0.145294, (float)0.136230, (float)0.127411,
(float)0.118835, (float)0.110535, (float)0.102509,
(float)0.094727, (float)0.087219, (float)0.080017,
(float)0.073090, (float)0.066437, (float)0.060089,
(float)0.054047, (float)0.048309, (float)0.042877,
(float)0.037750, (float)0.032928, (float)0.028442,
(float)0.024261, (float)0.020416, (float)0.016907,
(float)0.013702, (float)0.010834, (float)0.008301,
(float)0.006104, (float)0.004242, (float)0.002716,
(float)0.001526, (float)0.000671, (float)0.000183
};
/* Asymmetric LPC window */
float lpc_asymwinTbl[BLOCKL]={
(float)0.000061, (float)0.000214, (float)0.000458,
(float)0.000824, (float)0.001282, (float)0.001831,
(float)0.002472, (float)0.003235, (float)0.004120,
(float)0.005066, (float)0.006134, (float)0.007294,
(float)0.008545, (float)0.009918, (float)0.011383,
(float)0.012939, (float)0.014587, (float)0.016357,
(float)0.018219, (float)0.020172, (float)0.022217,
(float)0.024353, (float)0.026611, (float)0.028961,
(float)0.031372, (float)0.033905, (float)0.036530,
(float)0.039276, (float)0.042084, (float)0.044983,
(float)0.047974, (float)0.051086, (float)0.054260,
(float)0.057526, (float)0.060883, (float)0.064331,
(float)0.067871, (float)0.071503, (float)0.075226,
(float)0.079010, (float)0.082916, (float)0.086884,
(float)0.090942, (float)0.095062, (float)0.099304,
(float)0.103607, (float)0.107971, (float)0.112427,
(float)0.116974, (float)0.121582, (float)0.126282,
(float)0.131073, (float)0.135895, (float)0.140839,
(float)0.145813, (float)0.150879, (float)0.156006,
(float)0.161224, (float)0.166504, (float)0.171844,
(float)0.177246, (float)0.182709, (float)0.188263,
(float)0.193848, (float)0.199524, (float)0.205231,
(float)0.211029, (float)0.216858, (float)0.222778,
(float)0.228729, (float)0.234741, (float)0.240814,
(float)0.246918, (float)0.253082, (float)0.259308,
(float)0.265564, (float)0.271881, (float)0.278259,
(float)0.284668, (float)0.291107, (float)0.297607,
(float)0.304138, (float)0.310730, (float)0.317322,
(float)0.323975, (float)0.330658, (float)0.337372,
(float)0.344147, (float)0.350922, (float)0.357727,
(float)0.364594, (float)0.371460, (float)0.378357,
(float)0.385284, (float)0.392212, (float)0.399170,
(float)0.406158, (float)0.413177, (float)0.420197,
(float)0.427246, (float)0.434296, (float)0.441376,
(float)0.448456, (float)0.455536, (float)0.462646,
(float)0.469757, (float)0.476868, (float)0.483978,
(float)0.491089, (float)0.498230, (float)0.505341,
(float)0.512451, (float)0.519592, (float)0.526703,
(float)0.533813, (float)0.540924, (float)0.548004,
(float)0.555084, (float)0.562164, (float)0.569244,
(float)0.576294, (float)0.583313, (float)0.590332,
(float)0.597321, (float)0.604309, (float)0.611267,
(float)0.618195, (float)0.625092, (float)0.631989,
(float)0.638855, (float)0.645660, (float)0.652466,
(float)0.659241, (float)0.665985, (float)0.672668,
(float)0.679352, (float)0.685974, (float)0.692566,
(float)0.699127, (float)0.705658, (float)0.712128,
(float)0.718536, (float)0.724945, (float)0.731262,
(float)0.737549, (float)0.743805, (float)0.750000,
(float)0.756134, (float)0.762238, (float)0.768280,
(float)0.774261, (float)0.780182, (float)0.786072,
(float)0.791870, (float)0.797638, (float)0.803314,
(float)0.808960, (float)0.814514, (float)0.820038,
(float)0.825470, (float)0.830841, (float)0.836151,
(float)0.841400, (float)0.846558, (float)0.851654,
(float)0.856689, (float)0.861633, (float)0.866516,
(float)0.871338, (float)0.876068, (float)0.880737,
(float)0.885315, (float)0.889801, (float)0.894226,
(float)0.898560, (float)0.902832, (float)0.907013,
(float)0.911102, (float)0.915100, (float)0.919037,
(float)0.922882, (float)0.926636, (float)0.930328,
(float)0.933899, (float)0.937408, (float)0.940796,
(float)0.944122, (float)0.947357, (float)0.950470,
(float)0.953522, (float)0.956482, (float)0.959351,
(float)0.962097, (float)0.964783, (float)0.967377,
(float)0.969849, (float)0.972229, (float)0.974518,
(float)0.976715, (float)0.978821, (float)0.980835,
(float)0.982727, (float)0.984528, (float)0.986237,
(float)0.987854, (float)0.989380, (float)0.990784,
(float)0.992096, (float)0.993317, (float)0.994415,
(float)0.995422, (float)0.996338, (float)0.997162,
(float)0.997864, (float)0.998474, (float)0.998962,
(float)0.999390, (float)0.999695, (float)0.999878,
(float)0.999969, (float)0.999969, (float)0.996918,
(float)0.987701, (float)0.972382, (float)0.951050,
(float)0.923889, (float)0.891022, (float)0.852631,
(float)0.809021, (float)0.760406, (float)0.707092,
(float)0.649445, (float)0.587799, (float)0.522491,
(float)0.453979, (float)0.382690, (float)0.309021,
(float)0.233459, (float)0.156433, (float)0.078461
};
/* Lag window for LPC */
float lpc_lagwinTbl[LPC_FILTERORDER + 1]={
(float)1.000100, (float)0.998890, (float)0.995569,
(float)0.990057, (float)0.982392,
(float)0.972623, (float)0.960816, (float)0.947047,
(float)0.931405, (float)0.913989, (float)0.894909};
/* LSF quantization*/
float lsfCbTbl[64 * 3 + 128 * 3 + 128 * 4] = {
(float)0.155396, (float)0.273193, (float)0.451172,
(float)0.390503, (float)0.648071, (float)1.002075,
(float)0.440186, (float)0.692261, (float)0.955688,
(float)0.343628, (float)0.642334, (float)1.071533,
(float)0.318359, (float)0.491577, (float)0.670532,
(float)0.193115, (float)0.375488, (float)0.725708,
(float)0.364136, (float)0.510376, (float)0.658691,
(float)0.297485, (float)0.527588, (float)0.842529,
(float)0.227173, (float)0.365967, (float)0.563110,
(float)0.244995, (float)0.396729, (float)0.636475,
(float)0.169434, (float)0.300171, (float)0.520264,
(float)0.312866, (float)0.464478, (float)0.643188,
(float)0.248535, (float)0.429932, (float)0.626099,
(float)0.236206, (float)0.491333, (float)0.817139,
(float)0.334961, (float)0.625122, (float)0.895752,
(float)0.343018, (float)0.518555, (float)0.698608,
(float)0.372803, (float)0.659790, (float)0.945435,
(float)0.176880, (float)0.316528, (float)0.581421,
(float)0.416382, (float)0.625977, (float)0.805176,
(float)0.303223, (float)0.568726, (float)0.915039,
(float)0.203613, (float)0.351440, (float)0.588135,
(float)0.221191, (float)0.375000, (float)0.614746,
(float)0.199951, (float)0.323364, (float)0.476074,
(float)0.300781, (float)0.433350, (float)0.566895,
(float)0.226196, (float)0.354004, (float)0.507568,
(float)0.300049, (float)0.508179, (float)0.711670,
(float)0.312012, (float)0.492676, (float)0.763428,
(float)0.329956, (float)0.541016, (float)0.795776,
(float)0.373779, (float)0.604614, (float)0.928833,
(float)0.210571, (float)0.452026, (float)0.755249,
(float)0.271118, (float)0.473267, (float)0.662476,
(float)0.285522, (float)0.436890, (float)0.634399,
(float)0.246704, (float)0.565552, (float)0.859009,
(float)0.270508, (float)0.406250, (float)0.553589,
(float)0.361450, (float)0.578491, (float)0.813843,
(float)0.342651, (float)0.482788, (float)0.622437,
(float)0.340332, (float)0.549438, (float)0.743164,
(float)0.200439, (float)0.336304, (float)0.540894,
(float)0.407837, (float)0.644775, (float)0.895142,
(float)0.294678, (float)0.454834, (float)0.699097,
(float)0.193115, (float)0.344482, (float)0.643188,
(float)0.275757, (float)0.420776, (float)0.598755,
(float)0.380493, (float)0.608643, (float)0.861084,
(float)0.222778, (float)0.426147, (float)0.676514,
(float)0.407471, (float)0.700195, (float)1.053101,
(float)0.218384, (float)0.377197, (float)0.669922,
(float)0.313232, (float)0.454102, (float)0.600952,
(float)0.347412, (float)0.571533, (float)0.874146,
(float)0.238037, (float)0.405396, (float)0.729492,
(float)0.223877, (float)0.412964, (float)0.822021,
(float)0.395264, (float)0.582153, (float)0.743896,
(float)0.247925, (float)0.485596, (float)0.720581,
(float)0.229126, (float)0.496582, (float)0.907715,
(float)0.260132, (float)0.566895, (float)1.012695,
(float)0.337402, (float)0.611572, (float)0.978149,
(float)0.267822, (float)0.447632, (float)0.769287,
(float)0.250610, (float)0.381714, (float)0.530029,
(float)0.430054, (float)0.805054, (float)1.221924,
(float)0.382568, (float)0.544067, (float)0.701660,
(float)0.383545, (float)0.710327, (float)1.149170,
(float)0.271362, (float)0.529053, (float)0.775513,
(float)0.246826, (float)0.393555, (float)0.588623,
(float)0.266846, (float)0.422119, (float)0.676758,
(float)0.311523, (float)0.580688, (float)0.838623,
(float)1.331177, (float)1.576782, (float)1.779541,
(float)1.160034, (float)1.401978, (float)1.768188,
(float)1.161865, (float)1.525146, (float)1.715332,
(float)0.759521, (float)0.913940, (float)1.119873,
(float)0.947144, (float)1.121338, (float)1.282471,
(float)1.015015, (float)1.557007, (float)1.804932,
(float)1.172974, (float)1.402100, (float)1.692627,
(float)1.087524, (float)1.474243, (float)1.665405,
(float)0.899536, (float)1.105225, (float)1.406250,
(float)1.148438, (float)1.484741, (float)1.796265,
(float)0.785645, (float)1.209839, (float)1.567749,
(float)0.867798, (float)1.166504, (float)1.450684,
(float)0.922485, (float)1.229858, (float)1.420898,
(float)0.791260, (float)1.123291, (float)1.409546,
(float)0.788940, (float)0.966064, (float)1.340332,
(float)1.051147, (float)1.272827, (float)1.556641,
(float)0.866821, (float)1.181152, (float)1.538818,
(float)0.906738, (float)1.373535, (float)1.607910,
(float)1.244751, (float)1.581421, (float)1.933838,
(float)0.913940, (float)1.337280, (float)1.539673,
(float)0.680542, (float)0.959229, (float)1.662720,
(float)0.887207, (float)1.430542, (float)1.800781,
(float)0.912598, (float)1.433594, (float)1.683960,
(float)0.860474, (float)1.060303, (float)1.455322,
(float)1.005127, (float)1.381104, (float)1.706909,
(float)0.800781, (float)1.363892, (float)1.829102,
(float)0.781860, (float)1.124390, (float)1.505981,
(float)1.003662, (float)1.471436, (float)1.684692,
(float)0.981323, (float)1.309570, (float)1.618042,
(float)1.228760, (float)1.554321, (float)1.756470,
(float)0.734375, (float)0.895752, (float)1.225586,
(float)0.841797, (float)1.055664, (float)1.249268,
(float)0.920166, (float)1.119385, (float)1.486206,
(float)0.894409, (float)1.539063, (float)1.828979,
(float)1.283691, (float)1.543335, (float)1.858276,
(float)0.676025, (float)0.933105, (float)1.490845,
(float)0.821289, (float)1.491821, (float)1.739868,
(float)0.923218, (float)1.144653, (float)1.580566,
(float)1.057251, (float)1.345581, (float)1.635864,
(float)0.888672, (float)1.074951, (float)1.353149,
(float)0.942749, (float)1.195435, (float)1.505493,
(float)1.492310, (float)1.788086, (float)2.039673,
(float)1.070313, (float)1.634399, (float)1.860962,
(float)1.253296, (float)1.488892, (float)1.686035,
(float)0.647095, (float)0.864014, (float)1.401855,
(float)0.866699, (float)1.254883, (float)1.453369,
(float)1.063965, (float)1.532593, (float)1.731323,
(float)1.167847, (float)1.521484, (float)1.884033,
(float)0.956055, (float)1.502075, (float)1.745605,
(float)0.928711, (float)1.288574, (float)1.479614,
(float)1.088013, (float)1.380737, (float)1.570801,
(float)0.905029, (float)1.186768, (float)1.371948,
(float)1.057861, (float)1.421021, (float)1.617432,
(float)1.108276, (float)1.312500, (float)1.501465,
(float)0.979492, (float)1.416992, (float)1.624268,
(float)1.276001, (float)1.661011, (float)2.007935,
(float)0.993042, (float)1.168579, (float)1.331665,
(float)0.778198, (float)0.944946, (float)1.235962,
(float)1.223755, (float)1.491333, (float)1.815674,
(float)0.852661, (float)1.350464, (float)1.722290,
(float)1.134766, (float)1.593140, (float)1.787354,
(float)1.051392, (float)1.339722, (float)1.531006,
(float)0.803589, (float)1.271240, (float)1.652100,
(float)0.755737, (float)1.143555, (float)1.639404,
(float)0.700928, (float)0.837280, (float)1.130371,
(float)0.942749, (float)1.197876, (float)1.669800,
(float)0.993286, (float)1.378296, (float)1.566528,
(float)0.801025, (float)1.095337, (float)1.298950,
(float)0.739990, (float)1.032959, (float)1.383667,
(float)0.845703, (float)1.072266, (float)1.543823,
(float)0.915649, (float)1.072266, (float)1.224487,
(float)1.021973, (float)1.226196, (float)1.481323,
(float)0.999878, (float)1.204102, (float)1.555908,
(float)0.722290, (float)0.913940, (float)1.340210,
(float)0.673340, (float)0.835938, (float)1.259521,
(float)0.832397, (float)1.208374, (float)1.394165,
(float)0.962158, (float)1.576172, (float)1.912842,
(float)1.166748, (float)1.370850, (float)1.556763,
(float)0.946289, (float)1.138550, (float)1.400391,
(float)1.035034, (float)1.218262, (float)1.386475,
(float)1.393799, (float)1.717773, (float)2.000244,
(float)0.972656, (float)1.260986, (float)1.760620,
(float)1.028198, (float)1.288452, (float)1.484619,
(float)0.773560, (float)1.258057, (float)1.756714,
(float)1.080322, (float)1.328003, (float)1.742676,
(float)0.823975, (float)1.450806, (float)1.917725,
(float)0.859009, (float)1.016602, (float)1.191895,
(float)0.843994, (float)1.131104, (float)1.645020,
(float)1.189697, (float)1.702759, (float)1.894409,
(float)1.346680, (float)1.763184, (float)2.066040,
(float)0.980469, (float)1.253784, (float)1.441650,
(float)1.338135, (float)1.641968, (float)1.932739,
(float)1.223267, (float)1.424194, (float)1.626465,
(float)0.765747, (float)1.004150, (float)1.579102,
(float)1.042847, (float)1.269165, (float)1.647461,
(float)0.968750, (float)1.257568, (float)1.555786,
(float)0.826294, (float)0.993408, (float)1.275146,
(float)0.742310, (float)0.950439, (float)1.430542,
(float)1.054321, (float)1.439819, (float)1.828003,
(float)1.072998, (float)1.261719, (float)1.441895,
(float)0.859375, (float)1.036377, (float)1.314819,
(float)0.895752, (float)1.267212, (float)1.605591,
(float)0.805420, (float)0.962891, (float)1.142334,
(float)0.795654, (float)1.005493, (float)1.468506,
(float)1.105347, (float)1.313843, (float)1.584839,
(float)0.792236, (float)1.221802, (float)1.465698,
(float)1.170532, (float)1.467651, (float)1.664063,
(float)0.838257, (float)1.153198, (float)1.342163,
(float)0.968018, (float)1.198242, (float)1.391235,
(float)1.250122, (float)1.623535, (float)1.823608,
(float)0.711670, (float)1.058350, (float)1.512085,
(float)1.204834, (float)1.454468, (float)1.739136,
(float)1.137451, (float)1.421753, (float)1.620117,
(float)0.820435, (float)1.322754, (float)1.578247,
(float)0.798706, (float)1.005005, (float)1.213867,
(float)0.980713, (float)1.324951, (float)1.512939,
(float)1.112305, (float)1.438843, (float)1.735596,
(float)1.135498, (float)1.356689, (float)1.635742,
(float)1.101318, (float)1.387451, (float)1.686523,
(float)0.849854, (float)1.276978, (float)1.523438,
(float)1.377930, (float)1.627563, (float)1.858154,
(float)0.884888, (float)1.095459, (float)1.287476,
(float)1.289795, (float)1.505859, (float)1.756592,
(float)0.817505, (float)1.384155, (float)1.650513,
(float)1.446655, (float)1.702148, (float)1.931885,
(float)0.835815, (float)1.023071, (float)1.385376,
(float)0.916626, (float)1.139038, (float)1.335327,
(float)0.980103, (float)1.174072, (float)1.453735,
(float)1.705688, (float)2.153809, (float)2.398315, (float)2.743408,
(float)1.797119, (float)2.016846, (float)2.445679, (float)2.701904,
(float)1.990356, (float)2.219116, (float)2.576416, (float)2.813477,
(float)1.849365, (float)2.190918, (float)2.611572, (float)2.835083,
(float)1.657959, (float)1.854370, (float)2.159058, (float)2.726196,
(float)1.437744, (float)1.897705, (float)2.253174, (float)2.655396,
(float)2.028687, (float)2.247314, (float)2.542358, (float)2.875854,
(float)1.736938, (float)1.922119, (float)2.185913, (float)2.743408,
(float)1.521606, (float)1.870972, (float)2.526855, (float)2.786987,
(float)1.841431, (float)2.050659, (float)2.463623, (float)2.857666,
(float)1.590088, (float)2.067261, (float)2.427979, (float)2.794434,
(float)1.746826, (float)2.057373, (float)2.320190, (float)2.800781,
(float)1.734619, (float)1.940552, (float)2.306030, (float)2.826416,
(float)1.786255, (float)2.204468, (float)2.457520, (float)2.795288,
(float)1.861084, (float)2.170532, (float)2.414551, (float)2.763672,
(float)2.001465, (float)2.307617, (float)2.552734, (float)2.811890,
(float)1.784424, (float)2.124146, (float)2.381592, (float)2.645508,
(float)1.888794, (float)2.135864, (float)2.418579, (float)2.861206,
(float)2.301147, (float)2.531250, (float)2.724976, (float)2.913086,
(float)1.837769, (float)2.051270, (float)2.261963, (float)2.553223,
(float)2.012939, (float)2.221191, (float)2.440186, (float)2.678101,
(float)1.429565, (float)1.858276, (float)2.582275, (float)2.845703,
(float)1.622803, (float)1.897705, (float)2.367310, (float)2.621094,
(float)1.581543, (float)1.960449, (float)2.515869, (float)2.736450,
(float)1.419434, (float)1.933960, (float)2.394653, (float)2.746704,
(float)1.721924, (float)2.059570, (float)2.421753, (float)2.769653,
(float)1.911011, (float)2.220703, (float)2.461060, (float)2.740723,
(float)1.581177, (float)1.860840, (float)2.516968, (float)2.874634,
(float)1.870361, (float)2.098755, (float)2.432373, (float)2.656494,
(float)2.059692, (float)2.279785, (float)2.495605, (float)2.729370,
(float)1.815674, (float)2.181519, (float)2.451538, (float)2.680542,
(float)1.407959, (float)1.768311, (float)2.343018, (float)2.668091,
(float)2.168701, (float)2.394653, (float)2.604736, (float)2.829346,
(float)1.636230, (float)1.865723, (float)2.329102, (float)2.824219,
(float)1.878906, (float)2.139526, (float)2.376709, (float)2.679810,
(float)1.765381, (float)1.971802, (float)2.195435, (float)2.586914,
(float)2.164795, (float)2.410889, (float)2.673706, (float)2.903198,
(float)2.071899, (float)2.331055, (float)2.645874, (float)2.907104,
(float)2.026001, (float)2.311523, (float)2.594849, (float)2.863892,
(float)1.948975, (float)2.180786, (float)2.514893, (float)2.797852,
(float)1.881836, (float)2.130859, (float)2.478149, (float)2.804199,
(float)2.238159, (float)2.452759, (float)2.652832, (float)2.868286,
(float)1.897949, (float)2.101685, (float)2.524292, (float)2.880127,
(float)1.856445, (float)2.074585, (float)2.541016, (float)2.791748,
(float)1.695557, (float)2.199097, (float)2.506226, (float)2.742676,
(float)1.612671, (float)1.877075, (float)2.435425, (float)2.732910,
(float)1.568848, (float)1.786499, (float)2.194580, (float)2.768555,
(float)1.953369, (float)2.164551, (float)2.486938, (float)2.874023,
(float)1.388306, (float)1.725342, (float)2.384521, (float)2.771851,
(float)2.115356, (float)2.337769, (float)2.592896, (float)2.864014,
(float)1.905762, (float)2.111328, (float)2.363525, (float)2.789307,
(float)1.882568, (float)2.332031, (float)2.598267, (float)2.827637,
(float)1.683594, (float)2.088745, (float)2.361938, (float)2.608643,
(float)1.874023, (float)2.182129, (float)2.536133, (float)2.766968,
(float)1.861938, (float)2.070435, (float)2.309692, (float)2.700562,
(float)1.722168, (float)2.107422, (float)2.477295, (float)2.837646,
(float)1.926880, (float)2.184692, (float)2.442627, (float)2.663818,
(float)2.123901, (float)2.337280, (float)2.553101, (float)2.777466,
(float)1.588135, (float)1.911499, (float)2.212769, (float)2.543945,
(float)2.053955, (float)2.370850, (float)2.712158, (float)2.939941,
(float)2.210449, (float)2.519653, (float)2.770386, (float)2.958618,
(float)2.199463, (float)2.474731, (float)2.718262, (float)2.919922,
(float)1.960083, (float)2.175415, (float)2.608032, (float)2.888794,
(float)1.953735, (float)2.185181, (float)2.428223, (float)2.809570,
(float)1.615234, (float)2.036499, (float)2.576538, (float)2.834595,
(float)1.621094, (float)2.028198, (float)2.431030, (float)2.664673,
(float)1.824951, (float)2.267456, (float)2.514526, (float)2.747925,
(float)1.994263, (float)2.229126, (float)2.475220, (float)2.833984,
(float)1.746338, (float)2.011353, (float)2.588257, (float)2.826904,
(float)1.562866, (float)2.135986, (float)2.471680, (float)2.687256,
(float)1.748901, (float)2.083496, (float)2.460938, (float)2.686279,
(float)1.758057, (float)2.131470, (float)2.636597, (float)2.891602,
(float)2.071289, (float)2.299072, (float)2.550781, (float)2.814331,
(float)1.839600, (float)2.094360, (float)2.496460, (float)2.723999,
(float)1.882202, (float)2.088257, (float)2.636841, (float)2.923096,
(float)1.957886, (float)2.153198, (float)2.384399, (float)2.615234,
(float)1.992920, (float)2.351196, (float)2.654419, (float)2.889771,
(float)2.012817, (float)2.262451, (float)2.643799, (float)2.903076,
(float)2.025635, (float)2.254761, (float)2.508423, (float)2.784058,
(float)2.316040, (float)2.589355, (float)2.794189, (float)2.963623,
(float)1.741211, (float)2.279541, (float)2.578491, (float)2.816284,
(float)1.845337, (float)2.055786, (float)2.348511, (float)2.822021,
(float)1.679932, (float)1.926514, (float)2.499756, (float)2.835693,
(float)1.722534, (float)1.946899, (float)2.448486, (float)2.728760,
(float)1.829834, (float)2.043213, (float)2.580444, (float)2.867676,
(float)1.676636, (float)2.071655, (float)2.322510, (float)2.704834,
(float)1.791504, (float)2.113525, (float)2.469727, (float)2.784058,
(float)1.977051, (float)2.215088, (float)2.497437, (float)2.726929,
(float)1.800171, (float)2.106689, (float)2.357788, (float)2.738892,
(float)1.827759, (float)2.170166, (float)2.525879, (float)2.852417,
(float)1.918335, (float)2.132813, (float)2.488403, (float)2.728149,
(float)1.916748, (float)2.225098, (float)2.542603, (float)2.857666,
(float)1.761230, (float)1.976074, (float)2.507446, (float)2.884521,
(float)2.053711, (float)2.367432, (float)2.608032, (float)2.837646,
(float)1.595337, (float)2.000977, (float)2.307129, (float)2.578247,
(float)1.470581, (float)2.031250, (float)2.375854, (float)2.647583,
(float)1.801392, (float)2.128052, (float)2.399780, (float)2.822876,
(float)1.853638, (float)2.066650, (float)2.429199, (float)2.751465,
(float)1.956299, (float)2.163696, (float)2.394775, (float)2.734253,
(float)1.963623, (float)2.275757, (float)2.585327, (float)2.865234,
(float)1.887451, (float)2.105469, (float)2.331787, (float)2.587402,
(float)2.120117, (float)2.443359, (float)2.733887, (float)2.941406,
(float)1.506348, (float)1.766968, (float)2.400513, (float)2.851807,
(float)1.664551, (float)1.981079, (float)2.375732, (float)2.774414,
(float)1.720703, (float)1.978882, (float)2.391479, (float)2.640991,
(float)1.483398, (float)1.814819, (float)2.434448, (float)2.722290,
(float)1.769043, (float)2.136597, (float)2.563721, (float)2.774414,
(float)1.810791, (float)2.049316, (float)2.373901, (float)2.613647,
(float)1.788330, (float)2.005981, (float)2.359131, (float)2.723145,
(float)1.785156, (float)1.993164, (float)2.399780, (float)2.832520,
(float)1.695313, (float)2.022949, (float)2.522583, (float)2.745117,
(float)1.584106, (float)1.965576, (float)2.299927, (float)2.715576,
(float)1.894897, (float)2.249878, (float)2.655884, (float)2.897705,
(float)1.720581, (float)1.995728, (float)2.299438, (float)2.557007,
(float)1.619385, (float)2.173950, (float)2.574219, (float)2.787964,
(float)1.883179, (float)2.220459, (float)2.474365, (float)2.825073,
(float)1.447632, (float)2.045044, (float)2.555542, (float)2.744873,
(float)1.502686, (float)2.156616, (float)2.653320, (float)2.846558,
(float)1.711548, (float)1.944092, (float)2.282959, (float)2.685791,
(float)1.499756, (float)1.867554, (float)2.341064, (float)2.578857,
(float)1.916870, (float)2.135132, (float)2.568237, (float)2.826050,
(float)1.498047, (float)1.711182, (float)2.223267, (float)2.755127,
(float)1.808716, (float)1.997559, (float)2.256470, (float)2.758545,
(float)2.088501, (float)2.402710, (float)2.667358, (float)2.890259,
(float)1.545044, (float)1.819214, (float)2.324097, (float)2.692993,
(float)1.796021, (float)2.012573, (float)2.505737, (float)2.784912,
(float)1.786499, (float)2.041748, (float)2.290405, (float)2.650757,
(float)1.938232, (float)2.264404, (float)2.529053, (float)2.796143
};

@ -0,0 +1,85 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
constants.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_CONSTANTS_H
#define __iLBC_CONSTANTS_H
#include "iLBC_define.h"
/* bit allocation */
extern int lsf_bitsTbl[];
extern int start_bitsTbl;
extern int scale_bitsTbl;
extern int state_bitsTbl;
extern int cb_bitsTbl[5][CB_NSTAGES];
extern int search_rangeTbl[5][CB_NSTAGES];
extern int gain_bitsTbl[];
/* ULP bit allocation */
extern int ulp_lsf_bitsTbl[6][ULP_CLASSES+2];
extern int ulp_start_bitsTbl[];
extern int ulp_startfirst_bitsTbl[];
extern int ulp_scale_bitsTbl[];
extern int ulp_state_bitsTbl[];
extern int ulp_extra_cb_indexTbl[CB_NSTAGES][ULP_CLASSES+2];
extern int ulp_extra_cb_gainTbl[CB_NSTAGES][ULP_CLASSES+2];
extern int ulp_cb_indexTbl[NASUB][CB_NSTAGES][ULP_CLASSES+2];
extern int ulp_cb_gainTbl[NASUB][CB_NSTAGES][ULP_CLASSES+2];
/* high pass filters */
extern float hpi_zero_coefsTbl[];
extern float hpi_pole_coefsTbl[];
extern float hpo_zero_coefsTbl[];
extern float hpo_pole_coefsTbl[];
/* low pass filters */
extern float lpFilt_coefsTbl[];
/* LPC analysis and quantization */
extern float lpc_winTbl[];
extern float lpc_asymwinTbl[];
extern float lpc_lagwinTbl[];
extern float lsfCbTbl[];
extern float lsfmeanTbl[];
extern int dim_lsfCbTbl[];
extern int size_lsfCbTbl[];
extern float lsf_weightTbl[];
/* state quantization tables */
extern float state_sq3Tbl[];
extern float state_frgqTbl[];
/* gain quantization tables */
extern float gain_sq3Tbl[];
extern float gain_sq4Tbl[];
extern float gain_sq5Tbl[];
/* adaptive codebook definitions */
extern int memLfTbl[];
extern int stMemLTbl;
extern float cbfiltersTbl[CB_FILTERLEN];
/* enhancer definitions */
extern float polyphaserTbl[];
extern float enh_plocsTbl[];
#endif

@ -0,0 +1,207 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
createCB.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "iLBC_define.h"
#include "constants.h"
#include <string.h>
#include <math.h>
/*----------------------------------------------------------------*
* Construct an additional codebook vector by filtering the
* initial codebook buffer. This vector is then used to expand
* the codebook with an additional section.
*---------------------------------------------------------------*/
void filteredCBvecs(
float *cbvectors, /* (o) Codebook vectors for the higher
section */
float *mem, /* (i) Buffer to create codebook vector from
*/
int lMem /* (i) Length of buffer */
){
int j, k;
float *pp, *pp1;
float tempbuff2[CB_MEML+CB_FILTERLEN];
float *pos;
memset(tempbuff2, 0, (CB_HALFFILTERLEN-1)*sizeof(float));
memcpy(&tempbuff2[CB_HALFFILTERLEN-1], mem, lMem*sizeof(float));
memset(&tempbuff2[lMem+CB_HALFFILTERLEN-1], 0,
(CB_HALFFILTERLEN+1)*sizeof(float));
/* Create codebook vector for higher section by filtering */
/* do filtering */
pos=cbvectors;
memset(pos, 0, lMem*sizeof(float));
for (k=0; k<lMem; k++) {
pp=&tempbuff2[k];
pp1=&cbfiltersTbl[0];
for (j=0;j<CB_FILTERLEN;j++) {
(*pos)+=(*pp++)*(*pp1++);
}
pos++;
}
}
/*----------------------------------------------------------------*
* Search the augmented part of the codebook to find the best
* measure.
*----------------------------------------------------------------*/
void searchAugmentedCB(
int low, /* (i) Start index for the search */
int high, /* (i) End index for the search */
int stage, /* (i) Current stage */
int startIndex, /* (i) Codebook index for the first
aug vector */
float *target, /* (i) Target vector for encoding */
float *buffer, /* (i) Pointer to the end of the buffer for
augmented codebook construction */
float *max_measure, /* (i/o) Currently maximum measure */
int *best_index,/* (o) Currently the best index */
float *gain, /* (o) Currently the best gain */
float *energy, /* (o) Energy of augmented codebook
vectors */
float *invenergy/* (o) Inv energy of augmented codebook
vectors */
) {
int lagcount, ilow, j, tmpIndex;
float *pp, *ppo, *ppi, *ppe, crossDot, alfa;
float weighted, measure, nrjRecursive;
float ftmp;
/* Compute the energy for the first (low-5)
noninterpolated samples */
nrjRecursive = (float) 0.0;
pp = buffer - low + 1;
for (j=0; j<(low-5); j++) {
nrjRecursive += ( (*pp)*(*pp) );
pp++;
}
ppe = buffer - low;
for (lagcount=low; lagcount<=high; lagcount++) {
/* Index of the codebook vector used for retrieving
energy values */
tmpIndex = startIndex+lagcount-20;
ilow = lagcount-4;
/* Update the energy recursively to save complexity */
nrjRecursive = nrjRecursive + (*ppe)*(*ppe);
ppe--;
energy[tmpIndex] = nrjRecursive;
/* Compute cross dot product for the first (low-5) samples */
crossDot = (float) 0.0;
pp = buffer-lagcount;
for (j=0; j<ilow; j++) {
crossDot += target[j]*(*pp++);
}
/* interpolation */
alfa = (float) 0.2;
ppo = buffer-4;
ppi = buffer-lagcount-4;
for (j=ilow; j<lagcount; j++) {
weighted = ((float)1.0-alfa)*(*ppo)+alfa*(*ppi);
ppo++;
ppi++;
energy[tmpIndex] += weighted*weighted;
crossDot += target[j]*weighted;
alfa += (float)0.2;
}
/* Compute energy and cross dot product for the
remaining samples */
pp = buffer - lagcount;
for (j=lagcount; j<SUBL; j++) {
energy[tmpIndex] += (*pp)*(*pp);
crossDot += target[j]*(*pp++);
}
if(energy[tmpIndex]>0.0) {
invenergy[tmpIndex]=(float)1.0/(energy[tmpIndex]+EPS);
} else {
invenergy[tmpIndex] = (float) 0.0;
}
if (stage==0) {
measure = (float)-10000000.0;
if (crossDot > 0.0) {
measure = crossDot*crossDot*invenergy[tmpIndex];
}
}
else {
measure = crossDot*crossDot*invenergy[tmpIndex];
}
/* check if measure is better */
ftmp = crossDot*invenergy[tmpIndex];
if ((measure>*max_measure) && (fabs(ftmp)<CB_MAXGAIN)) {
*best_index = tmpIndex;
*max_measure = measure;
*gain = ftmp;
}
}
}
/*----------------------------------------------------------------*
* Recreate a specific codebook vector from the augmented part.
*
*----------------------------------------------------------------*/
void createAugmentedVec(
int index, /* (i) Index for the augmented vector
to be created */
float *buffer, /* (i) Pointer to the end of the buffer for
augmented codebook construction */
float *cbVec/* (o) The construced codebook vector */
) {
int ilow, j;
float *pp, *ppo, *ppi, alfa, alfa1, weighted;
ilow = index-5;
/* copy the first noninterpolated part */
pp = buffer-index;
memcpy(cbVec,pp,sizeof(float)*index);
/* interpolation */
alfa1 = (float)0.2;
alfa = 0.0;
ppo = buffer-5;
ppi = buffer-index-5;
for (j=ilow; j<index; j++) {
weighted = ((float)1.0-alfa)*(*ppo)+alfa*(*ppi);
ppo++;
ppi++;
cbVec[j] = weighted;
alfa += alfa1;
}
/* copy the second noninterpolated part */
pp = buffer - index;
memcpy(cbVec+index,pp,sizeof(float)*(SUBL-index));
}

@ -0,0 +1,55 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
createCB.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_CREATECB_H
#define __iLBC_CREATECB_H
void filteredCBvecs(
float *cbvectors, /* (o) Codebook vector for the
higher section */
float *mem, /* (i) Buffer to create codebook
vectors from */
int lMem /* (i) Length of buffer */
);
void searchAugmentedCB(
int low, /* (i) Start index for the search */
int high, /* (i) End index for the search */
int stage, /* (i) Current stage */
int startIndex, /* (i) CB index for the first
augmented vector */
float *target, /* (i) Target vector for encoding */
float *buffer, /* (i) Pointer to the end of the
buffer for augmented codebook
construction */
float *max_measure, /* (i/o) Currently maximum measure */
int *best_index,/* (o) Currently the best index */
float *gain, /* (o) Currently the best gain */
float *energy, /* (o) Energy of augmented
codebook vectors */
float *invenergy/* (o) Inv energy of aug codebook
vectors */
);
void createAugmentedVec(
int index, /* (i) Index for the aug vector
to be created */
float *buffer, /* (i) Pointer to the end of the
buffer for augmented codebook
construction */
float *cbVec /* (o) The construced codebook vector */
);
#endif

@ -0,0 +1,303 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
doCPLC.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
/*----------------------------------------------------------------*
* Compute cross correlation and pitch gain for pitch prediction
* of last subframe at given lag.
*---------------------------------------------------------------*/
void compCorr(
float *cc, /* (o) cross correlation coefficient */
float *gc, /* (o) gain */
float *buffer, /* (i) signal buffer */
int lag, /* (i) pitch lag */
int bLen, /* (i) length of buffer */
int sRange /* (i) correlation search length */
){
int i;
float ftmp1, ftmp2;
ftmp1 = 0.0;
ftmp2 = 0.0;
for (i=0; i<sRange; i++) {
ftmp1 += buffer[bLen-sRange+i] *
buffer[bLen-sRange+i-lag];
ftmp2 += buffer[bLen-sRange+i-lag] *
buffer[bLen-sRange+i-lag];
}
if (ftmp2 > 0.0) {
*cc = ftmp1*ftmp1/ftmp2;
*gc = (float)fabs(ftmp1/ftmp2);
}
else {
*cc = 0.0;
*gc = 0.0;
}
}
/*----------------------------------------------------------------*
* Packet loss concealment routine. Conceals a residual signal
* and LP parameters. If no packet loss, update state.
*---------------------------------------------------------------*/
void doThePLC(
float *PLCresidual, /* (o) concealed residual */
float *PLClpc, /* (o) concealed LP parameters */
int PLI, /* (i) packet loss indicator
0 - no PL, 1 = PL */
float *decresidual, /* (i) decoded residual */
float *lpc, /* (i) decoded LPC (only used for no PL) */
int inlag, /* (i) pitch lag */
iLBC_Dec_Inst_t *iLBCdec_inst
/* (i/o) decoder instance */
){
int lag=20, randlag;
float gain, maxcc;
float gain_comp, maxcc_comp;
int i, pick, offset;
float ftmp, ftmp1, randvec[BLOCKL], pitchfact;
/* Packet Loss */
if (PLI == 1) {
(*iLBCdec_inst).consPLICount += 1;
/* if previous frame not lost,
determine pitch pred. gain */
if ((*iLBCdec_inst).prevPLI != 1) {
/* Search around the previous lag to find the
best pitch period */
lag=inlag-3;
compCorr(&maxcc, &gain, (*iLBCdec_inst).prevResidual,
lag, BLOCKL, 60);
for (i=inlag-2;i<=inlag+3;i++) {
compCorr(&maxcc_comp, &gain_comp,
(*iLBCdec_inst).prevResidual,
i, BLOCKL, 60);
if (maxcc_comp>maxcc) {
maxcc=maxcc_comp;
gain=gain_comp;
lag=i;
}
}
if (gain > 1.0) {
gain = 1.0;
}
}
/* previous frame lost, use recorded lag and gain */
else {
lag=(*iLBCdec_inst).prevLag;
gain=(*iLBCdec_inst).prevGain;
}
/* Attenuate signal and scale down pitch pred gain if
several frames lost consecutively */
if ((*iLBCdec_inst).consPLICount > 1) {
gain *= (float)0.9;
}
/* Compute mixing factor of picth repeatition and noise */
if (gain > PLC_XT_MIX) {
pitchfact = PLC_YT_MIX;
} else if (gain < PLC_XB_MIX) {
pitchfact = PLC_YB_MIX;
} else {
pitchfact = PLC_YB_MIX + (gain - PLC_XB_MIX) *
(PLC_YT_MIX-PLC_YB_MIX)/(PLC_XT_MIX-PLC_XB_MIX);
}
/* compute concealed residual */
(*iLBCdec_inst).energy = 0.0;
for (i=0; i<BLOCKL; i++) {
/* noise component */
(*iLBCdec_inst).seed=((*iLBCdec_inst).seed*69069L+1) &
(0x80000000L-1);
randlag = 50 + ((signed long) (*iLBCdec_inst).seed)%70;
pick = i - randlag;
if (pick < 0) {
randvec[i] = gain *
(*iLBCdec_inst).prevResidual[BLOCKL+pick];
} else {
randvec[i] = gain * randvec[pick];
}
/* pitch repeatition component */
pick = i - lag;
if (pick < 0) {
PLCresidual[i] = gain *
(*iLBCdec_inst).prevResidual[BLOCKL+pick];
} else {
PLCresidual[i] = gain * PLCresidual[pick];
}
/* mix noise and pitch repeatition */
PLCresidual[i] = (pitchfact * PLCresidual[i] +
((float)1.0 - pitchfact) * randvec[i]);
(*iLBCdec_inst).energy += PLCresidual[i] *
PLCresidual[i];
}
/* less than 30 dB, use only noise */
if (sqrt((*iLBCdec_inst).energy/(float)BLOCKL) < 30.0) {
(*iLBCdec_inst).energy = 0.0;
gain=0.0;
for (i=0; i<BLOCKL; i++) {
PLCresidual[i] = randvec[i];
(*iLBCdec_inst).energy += PLCresidual[i] *
PLCresidual[i];
}
}
/* conceal LPC by bandwidth expansion of old LPC */
ftmp=PLC_BWEXPAND;
PLClpc[0]=(float)1.0;
for (i=1; i<LPC_FILTERORDER+1; i++) {
PLClpc[i] = ftmp * (*iLBCdec_inst).prevLpc[i];
ftmp *= PLC_BWEXPAND;
}
}
/* previous frame lost and this frame OK, mixing in
with new frame */
else if ((*iLBCdec_inst).prevPLI == 1) {
lag = (*iLBCdec_inst).prevLag;
gain = (*iLBCdec_inst).prevGain;
/* if pitch pred gain high, do overlap-add */
if (gain >= PLC_GAINTHRESHOLD) {
/* Compute mixing factor of pitch repeatition
and noise */
if (gain > PLC_XT_MIX) {
pitchfact = PLC_YT_MIX;
} else if (gain < PLC_XB_MIX) {
pitchfact = PLC_YB_MIX;
} else {
pitchfact = PLC_YB_MIX + (gain - PLC_XB_MIX) *
(PLC_YT_MIX-PLC_YB_MIX)/(PLC_XT_MIX-PLC_XB_MIX);
}
/* compute concealed residual for 3 subframes */
for (i=0; i<3*SUBL; i++) {
(*iLBCdec_inst).seed=((*iLBCdec_inst).seed*
69069L+1) & (0x80000000L-1);
randlag = 50 + ((signed long)
(*iLBCdec_inst).seed)%70;
/* noise component */
pick = i - randlag;
if (pick < 0) {
randvec[i] = gain *
(*iLBCdec_inst).prevResidual[BLOCKL+pick];
} else {
randvec[i] = gain * randvec[pick];
}
/* pitch repeatition component */
pick = i - lag;
if (pick < 0) {
PLCresidual[i] = gain *
(*iLBCdec_inst).prevResidual[BLOCKL+pick];
} else {
PLCresidual[i] = gain * PLCresidual[pick];
}
/* mix noise and pitch repeatition */
PLCresidual[i] = (pitchfact * PLCresidual[i] +
((float)1.0 - pitchfact) * randvec[i]);
}
/* interpolate concealed residual with actual
residual */
offset = 3*SUBL;
for (i=0; i<offset; i++) {
ftmp1 = (float) (i+1) / (float) (offset+1);
ftmp = (float)1.0 - ftmp1;
PLCresidual[i]=PLCresidual[i]*ftmp+
decresidual[i]*ftmp1;
}
memcpy(PLCresidual+offset, decresidual+offset,
(BLOCKL-offset)*sizeof(float));
} else {
memcpy(PLCresidual, decresidual, BLOCKL*sizeof(float));
}
/* copy LPC */
memcpy(PLClpc, lpc, (LPC_FILTERORDER+1)*sizeof(float));
(*iLBCdec_inst).consPLICount = 0;
}
/* no packet loss, copy input */
else {
memcpy(PLCresidual, decresidual, BLOCKL*sizeof(float));
memcpy(PLClpc, lpc, (LPC_FILTERORDER+1)*sizeof(float));
}
/* update state */
(*iLBCdec_inst).prevLag = lag;
(*iLBCdec_inst).prevGain = gain;
(*iLBCdec_inst).prevPLI = PLI;
memcpy((*iLBCdec_inst).prevLpc, PLClpc,
(LPC_FILTERORDER+1)*sizeof(float));
memcpy((*iLBCdec_inst).prevResidual, PLCresidual,
BLOCKL*sizeof(float));
}

@ -0,0 +1,31 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
doCPLC.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_DOLPC_H
#define __iLBC_DOLPC_H
void doThePLC(
float *PLCresidual, /* (o) concealed residual */
float *PLClpc, /* (o) concealed LP parameters */
int PLI, /* (i) packet loss indicator
0 - no PL, 1 = PL */
float *decresidual, /* (i) decoded residual */
float *lpc, /* (i) decoded LPC (only used for no PL) */
int inlag, /* (i) pitch lag */
iLBC_Dec_Inst_t *iLBCdec_inst
/* (i/o) decoder instance */
);
#endif

@ -0,0 +1,600 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
enhancer.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
#include "constants.h"
#include "filter.h"
/*----------------------------------------------------------------*
* Find index in array such that the array element with said
* index is the element of said array closest to "value"
* according to the squared-error criterion
*---------------------------------------------------------------*/
void NearestNeighbor(
int *index, /* (o) index of array element closest to value */
float *array, /* (i) data array */
float value,/* (i) value */
int arlength/* (i) dimension of data array */
){
int i;
float bestcrit,crit;
crit=array[0]-value;
bestcrit=crit*crit;
*index=0;
for(i=1;i<arlength;i++){
crit=array[i]-value;
crit=crit*crit;
if(crit<bestcrit){
bestcrit=crit;
*index=i;
}
}
}
/*----------------------------------------------------------------*
* compute cross correlation between sequences
*---------------------------------------------------------------*/
void mycorr1(
float* corr, /* (o) correlation of seq1 and seq2 */
float* seq1, /* (i) first sequence */
int dim1, /* (i) dimension first seq1 */
const float *seq2, /* (i) second sequence */
int dim2 /* (i) dimension seq2 */
){
int i,j;
for(i=0;i<=dim1-dim2; i++){
corr[i]=0.0;
for(j=0;j<dim2; j++){
corr[i] += seq1[i+j] * seq2[j];
}
}
}
/*----------------------------------------------------------------*
* upsample finite array assuming zeros outside bounds
*---------------------------------------------------------------*/
void enh_upsample(
float* useq1, /* (o) upsampled output sequence */
float* seq1,/* (i) unupsampled sequence */
int dim1, /* (i) dimension seq1 */
int hfl /* (i) polyphase filter length=2*hfl+1 */
){
float *pu,*ps;
int i,j,k,q,filterlength,hfl2;
const float *polyp[ENH_UPS0]; /* pointers to polyphase columns */
const float *pp;
/* define pointers for filter */
filterlength=2*hfl+1;
if( filterlength > dim1){
hfl2=(int) (dim1/2);
for(j=0;j<ENH_UPS0; j++) {
polyp[j]=polyphaserTbl+j*filterlength+hfl-hfl2;
}
hfl=hfl2;
filterlength=2*hfl+1;
}
else {
for(j=0;j<ENH_UPS0; j++) {
polyp[j]=polyphaserTbl+j*filterlength;
}
}
/* filtering: filter overhangs left side of sequence */
pu=useq1;
for(i=hfl;i<filterlength; i++){
for(j=0;j<ENH_UPS0; j++){
*pu=0.0;
pp = polyp[j];
ps = seq1+i;
for(k=0;k<=i;k++) {
*pu += *ps-- * *pp++;
}
pu++;
}
}
/* filtering: simple convolution=inner products */
for(i=filterlength; i<dim1; i++){
for(j=0;j<ENH_UPS0; j++){
*pu=0.0;
pp = polyp[j];
ps = seq1+i;
for(k=0;k<filterlength;k++) {
*pu += *ps-- * *pp++;
}
pu++;
}
}
/* filtering: filter overhangs right side of sequence */
for(q=1; q<=hfl;q++){
for(j=0;j<ENH_UPS0; j++){
*pu=0.0;
pp = polyp[j]+q;
ps = seq1+dim1-1;
for(k=0;k<filterlength-q;k++) {
*pu += *ps-- * *pp++;
}
pu++;
}
}
}
/*----------------------------------------------------------------*
* find segment starting near idata+estSegPos that has highest
* correlation with idata+centerStartPos through
* idata+centerStartPos+ENH_BLOCKL-1 segment is found at a
* resolution of ENH_UPSO times the original of the original
* sampling rate
*---------------------------------------------------------------*/
void refiner(
float *seg, /* (o) segment array */
float *updStartPos, /* (o) updated start point */
float* idata, /* (i) original data buffer */
int idatal, /* (i) dimension of idata */
int centerStartPos, /* (i) beginning center segment */
float estSegPos,/* (i) estimated beginning other segment */
float period /* (i) estimated pitch period */
){
int estSegPosRounded,searchSegStartPos,searchSegEndPos,corrdim;
int tloc,tloc2,i,st,en,fraction;
float vect[ENH_VECTL],corrVec[ENH_CORRDIM],maxv;
float corrVecUps[ENH_CORRDIM*ENH_UPS0];
(void)period;
/* defining array bounds */
estSegPosRounded=(int)(estSegPos - 0.5);
searchSegStartPos=estSegPosRounded-ENH_SLOP;
if (searchSegStartPos<0) {
searchSegStartPos=0;
}
searchSegEndPos=estSegPosRounded+ENH_SLOP;
if(searchSegEndPos+ENH_BLOCKL >= idatal) {
searchSegEndPos=idatal-ENH_BLOCKL-1;
}
corrdim=searchSegEndPos-searchSegStartPos+1;
/* compute upsampled correlation (corr33) and find
location of max */
mycorr1(corrVec,idata+searchSegStartPos,
corrdim+ENH_BLOCKL-1,idata+centerStartPos,ENH_BLOCKL);
enh_upsample(corrVecUps,corrVec,corrdim,ENH_FL0);
tloc=0; maxv=corrVecUps[0];
for(i=1;i<ENH_UPS0*corrdim; i++){
if(corrVecUps[i]>maxv){
tloc=i;
maxv=corrVecUps[i];
}
}
/* make vector can be upsampled without ever running outside
bounds */
*updStartPos= (float)searchSegStartPos +
(float)tloc/(float)ENH_UPS0+(float)1.0;
tloc2=(int)(tloc/ENH_UPS0);
if (tloc>tloc2*ENH_UPS0) {
tloc2++;
}
st=searchSegStartPos+tloc2-ENH_FL0;
if(st<0){
memset(vect,0,-st*sizeof(float));
memcpy(&vect[-st],idata, (ENH_VECTL+st)*sizeof(float));
}
else{
en=st+ENH_VECTL;
if(en>idatal){
memcpy(vect, &idata[st],
(ENH_VECTL-(en-idatal))*sizeof(float));
memset(&vect[ENH_VECTL-(en-idatal)], 0,
(en-idatal)*sizeof(float));
}
else {
memcpy(vect, &idata[st], ENH_VECTL*sizeof(float));
}
}
fraction=tloc2*ENH_UPS0-tloc;
/* compute the segment (this is actually a convolution) */
mycorr1(seg,vect,ENH_VECTL,polyphaserTbl+(2*ENH_FL0+1)*fraction,
2*ENH_FL0+1);
}
/*----------------------------------------------------------------*
* find the smoothed output data
*---------------------------------------------------------------*/
void smath(
float *odata, /* (o) smoothed output */
float *sseq,/* (i) said second sequence of waveforms */
int hl, /* (i) 2*hl+1 is sseq dimension */
float alpha0/* (i) max smoothing energy fraction */
){
int i,k;
float w00,w10,w11,A,B,C,*psseq,err,errs;
float surround[BLOCKL]; /* shape contributed by other than
current */
float wt[2*ENH_HL+1]; /* waveform weighting to get surround
shape */
float denom;
/* create shape of contribution from all waveforms except the
current one */
for(i=1;i<=2*hl+1; i++) {
wt[i-1] = (float)0.5*(1 - (float)cos(2*PI*i/(2*hl+2)));
}
wt[hl]=0.0; /* for clarity, not used */
for(i=0;i<ENH_BLOCKL; i++) {
surround[i]=sseq[i]*wt[0];
}
for(k=1;k<hl; k++){
psseq=sseq+k*ENH_BLOCKL;
for(i=0;i<ENH_BLOCKL; i++) {
surround[i]+=psseq[i]*wt[k];
}
}
for(k=hl+1;k<=2*hl; k++){
psseq=sseq+k*ENH_BLOCKL;
for(i=0;i<ENH_BLOCKL; i++) {
surround[i]+=psseq[i]*wt[k];
}
}
/* compute some inner products */
w00 = w10 = w11 = 0.0;
psseq=sseq+hl*ENH_BLOCKL; /* current block */
for(i=0;i<ENH_BLOCKL;i++) {
w00+=psseq[i]*psseq[i];
w11+=surround[i]*surround[i];
w10+=surround[i]*psseq[i];
}
if( fabs(w11) < 1.0) {
w11=1.0;
}
C = (float)sqrt( w00/w11);
/* first try enhancement without power-constraint */
errs=0.0;
psseq=sseq+hl*ENH_BLOCKL;
for(i=0;i<ENH_BLOCKL;i++) {
odata[i]=C*surround[i];
err=psseq[i]-odata[i];
errs+=err*err;
}
/* if constraint violated by first try, add constraint */
if( errs > alpha0 * w00){
if( w00 < 1) {
w00=1;
}
denom = (w11*w00-w10*w10)/(w00*w00);
if( denom > 0.0001){ /* eliminates numerical problems
for if smooth */
A = (float)sqrt( (alpha0- alpha0*alpha0/4)/denom);
B = -alpha0/2 - A * w10/w00;
B = B+1;
}
else{ /* essentially no difference between cycles;
smoothing not needed */
A= 0.0;
B= 1.0;
}
/* create smoothed sequence */
psseq=sseq+hl*ENH_BLOCKL;
for(i=0;i<ENH_BLOCKL;i++) {
odata[i]=A*surround[i]+B*psseq[i];
}
}
}
/*----------------------------------------------------------------*
* get the pitch-synchronous sample sequence
*---------------------------------------------------------------*/
void getsseq(
float *sseq, /* (o) the pitch-synchronous sequence */
float *idata, /* (i) original data */
int idatal, /* (i) dimension of data */
int centerStartPos, /* (i) where current block starts */
float *period, /* (i) rough-pitch-period array */
float *plocs, /* (i) where periods of period array
are taken */
int periodl, /* (i) dimension period array */
int hl /* (i)( 2*hl+1 is the number of sequences */
){
int i,centerEndPos,q;
float blockStartPos[2*ENH_HL+1];
int lagBlock[2*ENH_HL+1];
float plocs2[ENH_PLOCSL];
float *psseq;
centerEndPos=centerStartPos+ENH_BLOCKL-1;
/* present */
NearestNeighbor(lagBlock+hl,plocs,
(float)0.5*(centerStartPos+centerEndPos),periodl);
blockStartPos[hl]=(float)centerStartPos;
psseq=sseq+ENH_BLOCKL*hl;
memcpy(psseq, idata+centerStartPos, ENH_BLOCKL*sizeof(float));
/* past */
for(q=hl-1;q>=0;q--) {
blockStartPos[q]=blockStartPos[q+1]-period[lagBlock[q+1]];
NearestNeighbor(lagBlock+q,plocs,
blockStartPos[q]+ENH_BLOCKL_HALF-period[lagBlock[q+1]],
periodl);
if(blockStartPos[q]-ENH_OVERHANG>=0) {
refiner(sseq+q*ENH_BLOCKL,blockStartPos+q,idata,idatal,
centerStartPos,blockStartPos[q],
period[lagBlock[q+1]]);
} else {
psseq=sseq+q*ENH_BLOCKL;
memset(psseq, 0, ENH_BLOCKL*sizeof(float));
}
}
/* future */
for(i=0;i<periodl;i++) {
plocs2[i]=plocs[i]-period[i];
}
for(q=hl+1;q<=2*hl;q++) {
NearestNeighbor(lagBlock+q,plocs2,
blockStartPos[q-1]+ENH_BLOCKL_HALF,periodl);
blockStartPos[q]=blockStartPos[q-1]+period[lagBlock[q]];
if( blockStartPos[q]+ENH_BLOCKL+ENH_OVERHANG<idatal) {
refiner(sseq+ENH_BLOCKL*q,blockStartPos+q,idata,idatal,
centerStartPos,blockStartPos[q],period[lagBlock[q]]);
}
else {
psseq=sseq+q*ENH_BLOCKL;
memset(psseq, 0, ENH_BLOCKL*sizeof(float));
}
}
}
/*----------------------------------------------------------------*
* perform enhancement on idata+centerStartPos through
* idata+centerStartPos+ENH_BLOCKL-1
*---------------------------------------------------------------*/
void enhancer(
float *odata, /* (o) smoothed block, dimension blockl */
float *idata, /* (i) data buffer used for enhancing */
int idatal, /* (i) dimension idata */
int centerStartPos, /* (i) first sample current block
within idata */
float alpha0, /* (i) max correction-energy-fraction
(in [0,1]) */
float *period, /* (i) pitch period array */
float *plocs, /* (i) locations where period array
values valid */
int periodl /* (i) dimension of period and plocs */
){
float sseq[(2*ENH_HL+1)*ENH_BLOCKL];
/* get said second sequence of segments */
getsseq(sseq,idata,idatal,centerStartPos,period,
plocs,periodl,ENH_HL);
/* compute the smoothed output from said second sequence */
smath(odata,sseq,ENH_HL,alpha0);
}
/*----------------------------------------------------------------*
* cross correlation
*---------------------------------------------------------------*/
float xCorrCoef(
float *target, /* (i) first array */
float *regressor, /* (i) second array */
int subl /* (i) dimension arrays */
){
int i;
float ftmp1, ftmp2;
ftmp1 = 0.0;
ftmp2 = 0.0;
for (i=0; i<subl; i++) {
ftmp1 += target[i]*regressor[i];
ftmp2 += regressor[i]*regressor[i];
}
if (ftmp1 > 0.0) {
return (float)(ftmp1*ftmp1/ftmp2);
}
else {
return (float)0.0;
}
}
/*----------------------------------------------------------------*
* interface for enhancer
*---------------------------------------------------------------*/
int enhancerInterface(
float *out, /* (o) enhanced signal */
float *in, /* (i) unenhanced signal */
iLBC_Dec_Inst_t *iLBCdec_inst /* (i) buffers etc */
){
float *enh_buf, *enh_period;
int iblock, isample;
int lag, ilag, i;
float cc, maxcc;
float ftmp1, ftmp2, gain;
float *inPtr, *enh_bufPtr1, *enh_bufPtr2;
float lpState[6], downsampled[(ENH_NBLOCKS*ENH_BLOCKL+120)/2];
int inLen=ENH_NBLOCKS*ENH_BLOCKL+120;
int start;
enh_buf=iLBCdec_inst->enh_buf;
enh_period=iLBCdec_inst->enh_period;
memmove(enh_buf, &enh_buf[ENH_NBLOCKS*ENH_BLOCKL],
(ENH_NBLOCKS_EXTRA*ENH_BLOCKL)*sizeof(float));
memcpy(&enh_buf[ENH_NBLOCKS_EXTRA*ENH_BLOCKL], in,
(ENH_NBLOCKS*ENH_BLOCKL)*sizeof(float));
if (iLBCdec_inst->prev_enh_pl==1) {
/* PLC was performed on the previous packet */
lag = 20;
maxcc = xCorrCoef(in, in+lag, ENH_BLOCKL);
for (ilag=21; ilag<120; ilag++) {
cc = xCorrCoef(in, in+ilag, ENH_BLOCKL);
if (cc > maxcc) {
maxcc = cc;
lag = ilag;
}
}
ftmp1 = 0.0;
ftmp2 = 0.0;
for (i=0; i<ENH_BLOCKL; i++) {
ftmp1 += in[i]*in[i+lag];
ftmp2 += in[i+lag]*in[i+lag];
}
if (ftmp1 > 0.0) {
gain=(float)(ftmp1/ftmp2);
}
else {
gain=(float)0.0;
}
if (gain>1.0) {
gain=1.0;
} else if (gain<-1.0) {
gain=-1.0;
}
inPtr=&in[lag-1];
enh_bufPtr1=&enh_buf[ENH_NBLOCKS_EXTRA*ENH_BLOCKL-1];
if (lag>ENH_BLOCKL) {
start=ENH_BLOCKL;
} else {
start=lag;
}
for (isample = start; isample>0; isample--) {
*enh_bufPtr1-- = gain*(*inPtr--);
}
enh_bufPtr2=&enh_buf[ENH_NBLOCKS_EXTRA*ENH_BLOCKL-1];
for (isample = (ENH_BLOCKL-1-lag); isample>=0; isample--) {
*enh_bufPtr1-- = gain*(*enh_bufPtr2--);
}
}
memmove(enh_period, &enh_period[ENH_NBLOCKS],
ENH_NBLOCKS_EXTRA*sizeof(float));
/* Set state information to the 6 samples right before
the samples to be downsampled. */
memcpy(lpState, enh_buf+ENH_NBLOCKS_EXTRA*ENH_BLOCKL-126,
6*sizeof(float));
/* Down sample a factor 2 to save computations */
DownSample(enh_buf+ENH_NBLOCKS_EXTRA*ENH_BLOCKL-120,
lpFilt_coefsTbl, inLen,
lpState, downsampled);
/* Estimate the pitch in the down sampled domain. */
for(iblock = 0; iblock<ENH_NBLOCKS; iblock++){
lag = 10;
maxcc = xCorrCoef(downsampled+60+iblock*
ENH_BLOCKL_HALF, downsampled+60+iblock*
ENH_BLOCKL_HALF-lag, ENH_BLOCKL_HALF);
for (ilag=11; ilag<60; ilag++) {
cc = xCorrCoef(downsampled+60+iblock*
ENH_BLOCKL_HALF, downsampled+60+iblock*
ENH_BLOCKL_HALF-ilag, ENH_BLOCKL_HALF);
if (cc > maxcc) {
maxcc = cc;
lag = ilag;
}
}
/* Store the estimated lag in the non-downsampled domain */
enh_period[iblock+ENH_NBLOCKS_EXTRA] = (float)lag*2;
}
for(iblock = 0; iblock<ENH_NBLOCKS; iblock++){
enhancer(out+iblock*ENH_BLOCKL, enh_buf,
ENH_BUFL, (4+iblock)*ENH_BLOCKL,
ENH_ALPHA0, enh_period, enh_plocsTbl,
ENH_NBLOCKS_TOT);
}
return (lag*2);
}

@ -0,0 +1,34 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
enhancer.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __ENHANCER_H
#define __ENHANCER_H
#include "iLBC_define.h"
float xCorrCoef(
float *target, /* (i) first array */
float *regressor, /* (i) second array */
int subl /* (i) dimension arrays */
);
int enhancerInterface(
float *out, /* (o) the enhanced recidual signal */
float *in, /* (i) the recidual signal to enhance */
iLBC_Dec_Inst_t *iLBCdec_inst
/* (i/o) the decoder state structure */
);
#endif

@ -0,0 +1,161 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
filter.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "iLBC_define.h"
/*----------------------------------------------------------------*
* all-pole filter
*---------------------------------------------------------------*/
void AllPoleFilter(
float *InOut, /* (i/o) on entrance InOut[-orderCoef] to
InOut[-1] contain the state of the filter
(delayed samples). InOut[0] to
InOut[lengthInOut-1] contain the filter
input, on en exit InOut[-orderCoef] to
InOut[-1] is unchanged and InOut[0] to
InOut[lengthInOut-1] contain filtered
samples */
float *Coef,/* (i) filter coefficients, Coef[0] is assumed to
be 1.0 */
int lengthInOut,/* (i) number of input/output samples */
int orderCoef /* (i) number of filter coefficients */
){
int n,k;
for(n=0;n<lengthInOut;n++){
for(k=1;k<=orderCoef;k++){
*InOut -= Coef[k]*InOut[-k];
}
InOut++;
}
}
/*----------------------------------------------------------------*
* all-zero filter
*---------------------------------------------------------------*/
void AllZeroFilter(
float *In, /* (i) In[0] to In[lengthInOut-1] contain filter
input samples */
float *Coef,/* (i) filter coefficients (Coef[0] is assumed
to be 1.0) */
int lengthInOut,/* (i) number of input/output samples */
int orderCoef, /* (i) number of filter coefficients */
float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1]
contain the filter state, on exit Out[0]
to Out[lengthInOut-1] contain filtered
samples */
){
int n,k;
for(n=0;n<lengthInOut;n++){
*Out = Coef[0]*In[0];
for(k=1;k<=orderCoef;k++){
*Out += Coef[k]*In[-k];
}
Out++;
In++;
}
}
/*----------------------------------------------------------------*
* pole-zero filter
*---------------------------------------------------------------*/
void ZeroPoleFilter(
float *In, /* (i) In[0] to In[lengthInOut-1] contain filter
input samples In[-orderCoef] to In[-1]
contain state of all-zero section */
float *ZeroCoef,/* (i) filter coefficients for all-zero
section (ZeroCoef[0] is assumed to
be 1.0) */
float *PoleCoef,/* (i) filter coefficients for all-pole section
(ZeroCoef[0] is assumed to be 1.0) */
int lengthInOut,/* (i) number of input/output samples */
int orderCoef, /* (i) number of filter coefficients */
float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1]
contain state of all-pole section. On exit
Out[0] to Out[lengthInOut-1] contain
filtered samples */
){
AllZeroFilter(In,ZeroCoef,lengthInOut,orderCoef,Out);
AllPoleFilter(Out,PoleCoef,lengthInOut,orderCoef);
}
/*----------------------------------------------------------------*
* downsample (LP filter and decimation)
*---------------------------------------------------------------*/
void DownSample (
float *In, /* (i) input samples */
float *Coef, /* (i) filter coefficients */
int lengthIn, /* (i) number of input samples */
float *state, /* (i) filter state */
float *Out /* (o) downsampled output */
){
float o;
float *Out_ptr = Out;
float *Coef_ptr, *In_ptr;
float *state_ptr;
int i, j, stop;
/* LP filter and decimate at the same time */
for (i = DELAY_DS; i < lengthIn; i+=FACTOR_DS)
{
Coef_ptr = &Coef[0];
In_ptr = &In[i];
state_ptr = &state[FILTERORDER_DS-2];
o = (float)0.0;
stop = (i < FILTERORDER_DS) ? i + 1 : FILTERORDER_DS;
for (j = 0;j < stop; j++)
{
o += *Coef_ptr++ * (*In_ptr--);
}
for (j = i + 1; j < FILTERORDER_DS; j++)
{
o += *Coef_ptr++ * (*state_ptr--);
}
*Out_ptr++ = o;
}
/* Get the last part (use zeros as input for the future) */
for (i=(lengthIn+FACTOR_DS); i<(lengthIn+DELAY_DS);
i+=FACTOR_DS) {
o=(float)0.0;
if (i<lengthIn) {
Coef_ptr = &Coef[0];
In_ptr = &In[i];
for (j=0;j<FILTERORDER_DS;j++) {
o += *Coef_ptr++ * (*Out_ptr--);
}
} else {
Coef_ptr = &Coef[i-lengthIn];
In_ptr = &In[lengthIn-1];
for (j=0;j<FILTERORDER_DS-(i-lengthIn);j++) {
o += *Coef_ptr++ * (*In_ptr--);
}
}
*Out_ptr++ = o;
}
}

@ -0,0 +1,72 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
filter.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_FILTER_H
#define __iLBC_FILTER_H
void AllPoleFilter(
float *InOut, /* (i/o) on entrance InOut[-orderCoef] to
InOut[-1] contain the state of the filter
(delayed samples). InOut[0] to
InOut[lengthInOut-1] contain the filter
input, on en exit InOut[-orderCoef] to
InOut[-1] is unchanged and InOut[0] to
InOut[lengthInOut-1] contain filtered
samples */
float *Coef,/* (i) filter coefficients, Coef[0] is assumed to
be 1.0 */
int lengthInOut,/* (i) number of input/output samples */
int orderCoef /* (i) number of filter coefficients */
);
void AllZeroFilter(
float *In, /* (i) In[0] to In[lengthInOut-1] contain filter
input samples */
float *Coef,/* (i) filter coefficients (Coef[0] is assumed
to be 1.0) */
int lengthInOut,/* (i) number of input/output samples */
int orderCoef, /* (i) number of filter coefficients */
float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1]
contain the filter state, on exit Out[0]
to Out[lengthInOut-1] contain filtered
samples */
);
void ZeroPoleFilter(
float *In, /* (i) In[0] to In[lengthInOut-1] contain filter
input samples In[-orderCoef] to In[-1]
contain state of all-zero section */
float *ZeroCoef,/* (i) filter coefficients for all-zero
section (ZeroCoef[0] is assumed to
be 1.0) */
float *PoleCoef,/* (i) filter coefficients for all-pole section
(ZeroCoef[0] is assumed to be 1.0) */
int lengthInOut,/* (i) number of input/output samples */
int orderCoef, /* (i) number of filter coefficients */
float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1]
contain state of all-pole section. On exit
Out[0] to Out[lengthInOut-1] contain
filtered samples */
);
void DownSample (
float *In, /* (i) input samples */
float *Coef, /* (i) filter coefficients */
int lengthIn, /* (i) number of input samples */
float *state, /* (i) filter state */
float *Out /* (o) downsampled output */
);
#endif

@ -0,0 +1,103 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
gainquant.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <string.h>
#include <math.h>
#include "constants.h"
#include "filter.h"
/*----------------------------------------------------------------*
* quantizer for the gain in the gain-shape coding of residual
*---------------------------------------------------------------*/
float gainquant(/* (o) quantized gain value */
float in, /* (i) gain value */
float maxIn,/* (i) maximum of gain value */
int cblen, /* (i) number of quantization indices */
int *index /* (o) quantization index */
){
int i, tindex;
float minmeasure,measure, *cb, scale;
/* ensure a lower bound on the scaling factor */
scale=maxIn;
if (scale<0.1) {
scale=(float)0.1;
}
/* select the quantization table */
if (cblen == 8) {
cb = gain_sq3Tbl;
} else if (cblen == 16) {
cb = gain_sq4Tbl;
} else {
cb = gain_sq5Tbl;
}
/* select the best index in the quantization table */
minmeasure=10000000.0;
tindex=0;
for (i=0;i<cblen;i++) {
measure=(in-scale*cb[i])*(in-scale*cb[i]);
if (measure<minmeasure) {
tindex=i;
minmeasure=measure;
}
}
*index=tindex;
/* return the quantized value */
return scale*cb[tindex];
}
/*----------------------------------------------------------------*
* decoder for quantized gains in the gain-shape coding of
* residual
*---------------------------------------------------------------*/
float gaindequant( /* (o) quantized gain value */
int index, /* (i) quantization index */
float maxIn,/* (i) maximum of unquantized gain */
int cblen /* (i) number of quantization indices */
){
float scale;
/* obtain correct scale factor */
scale=(float)fabs(maxIn);
if (scale<0.1) {
scale=(float)0.1;
}
/* select the quantization table and return the decoded value */
if (cblen==8) {
return scale*gain_sq3Tbl[index];
} else if (cblen==16) {
return scale*gain_sq4Tbl[index];
}
else if (cblen==32) {
return scale*gain_sq5Tbl[index];
}
return 0.0;
}

@ -0,0 +1,32 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
gainquant.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_GAINQUANT_H
#define __iLBC_GAINQUANT_H
float gainquant(/* (o) quantized gain value */
float in, /* (i) gain value */
float maxIn,/* (i) maximum of gain value */
int cblen, /* (i) number of quantization indices */
int *index /* (o) quantization index */
);
float gaindequant( /* (o) quantized gain value */
int index, /* (i) quantization index */
float maxIn,/* (i) maximum of unquantized gain */
int cblen /* (i) number of quantization indices */
);
#endif

@ -0,0 +1,171 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
getCBvec.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "iLBC_define.h"
#include "constants.h"
#include <string.h>
/*----------------------------------------------------------------*
* Construct codebook vector for given index.
*---------------------------------------------------------------*/
void getCBvec(
float *cbvec, /* (o) Constructed codebook vector */
float *mem, /* (i) Codebook buffer */
int index, /* (i) Codebook index */
int lMem, /* (i) Length of codebook buffer */
int cbveclen/* (i) Codebook vector length */
){
int j, k, n, memInd, sFilt;
float tmpbuf[CB_MEML];
int base_size;
int ilow, ihigh;
float alfa, alfa1;
/* Determine size of codebook sections */
base_size=lMem-cbveclen+1;
if (cbveclen==SUBL) {
base_size+=cbveclen/2;
}
/* No filter -> First codebook section */
if (index<lMem-cbveclen+1) {
/* first non-interpolated vectors */
k=index+cbveclen;
/* get vector */
memcpy(cbvec, mem+lMem-k, cbveclen*sizeof(float));
} else if (index < base_size) {
k=2*(index-(lMem-cbveclen+1))+cbveclen;
ihigh=k/2;
ilow=ihigh-5;
/* Copy first noninterpolated part */
memcpy(cbvec, mem+lMem-k/2, ilow*sizeof(float));
/* interpolation */
alfa1=(float)0.2;
alfa=0.0;
for (j=ilow; j<ihigh; j++) {
cbvec[j]=((float)1.0-alfa)*mem[lMem-k/2+j]+
alfa*mem[lMem-k+j];
alfa+=alfa1;
}
/* Copy second noninterpolated part */
memcpy(cbvec+ihigh, mem+lMem-k+ihigh,
(cbveclen-ihigh)*sizeof(float));
}
/* Higher codebbok section based on filtering */
else {
/* first non-interpolated vectors */
if (index-base_size<lMem-cbveclen+1) {
float tempbuff2[CB_MEML+CB_FILTERLEN+1];
float *pos;
float *pp, *pp1;
memset(tempbuff2, 0, CB_HALFFILTERLEN*sizeof(float));
memcpy(&tempbuff2[CB_HALFFILTERLEN], mem,
lMem*sizeof(float));
memset(&tempbuff2[lMem+CB_HALFFILTERLEN], 0,
(CB_HALFFILTERLEN+1)*sizeof(float));
k=index-base_size+cbveclen;
sFilt=lMem-k;
memInd=sFilt+1-CB_HALFFILTERLEN;
/* do filtering */
pos=cbvec;
memset(pos, 0, cbveclen*sizeof(float));
for (n=0; n<cbveclen; n++) {
pp=&tempbuff2[memInd+n+CB_HALFFILTERLEN];
pp1=&cbfiltersTbl[0];
for (j=0;j<CB_FILTERLEN;j++) {
(*pos)+=(*pp++)*(*pp1++);
}
pos++;
}
}
/* interpolated vectors */
else {
float tempbuff2[CB_MEML+CB_FILTERLEN+1];
float *pos;
float *pp, *pp1;
int i;
memset(tempbuff2, 0, CB_HALFFILTERLEN*sizeof(float));
memcpy(&tempbuff2[CB_HALFFILTERLEN], mem,
lMem*sizeof(float));
memset(&tempbuff2[lMem+CB_HALFFILTERLEN], 0,
(CB_HALFFILTERLEN+1)*sizeof(float));
k=2*(index-base_size-(lMem-cbveclen+1))+cbveclen;
sFilt=lMem-k;
memInd=sFilt+1-CB_HALFFILTERLEN;
/* do filtering */
pos=&tmpbuf[sFilt];
memset(pos, 0, k*sizeof(float));
for (i=0; i<k; i++) {
pp=&tempbuff2[memInd+i+CB_HALFFILTERLEN];
pp1=&cbfiltersTbl[0];
for (j=0;j<CB_FILTERLEN;j++) {
(*pos)+=(*pp++)*(*pp1++);
}
pos++;
}
ihigh=k/2;
ilow=ihigh-5;
/* Copy first noninterpolated part */
memcpy(cbvec, tmpbuf+lMem-k/2, ilow*sizeof(float));
/* interpolation */
alfa1=(float)0.2;
alfa=0.0;
for (j=ilow; j<ihigh; j++) {
cbvec[j]=((float)1.0-alfa)*
tmpbuf[lMem-k/2+j]+alfa*tmpbuf[lMem-k+j];
alfa+=alfa1;
}
/* Copy second noninterpolated part */
memcpy(cbvec+ihigh, tmpbuf+lMem-k+ihigh,
(cbveclen-ihigh)*sizeof(float));
}
}
}

@ -0,0 +1,27 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
getCBvec.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_GETCBVEC_H
#define __iLBC_GETCBVEC_H
void getCBvec(
float *cbvec, /* (o) Constructed codebook vector */
float *mem, /* (i) Codebook buffer */
int index, /* (i) Codebook index */
int lMem, /* (i) Length of codebook buffer */
int cbveclen/* (i) Codebook vector length */
);
#endif

@ -0,0 +1,293 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
helpfun.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include "iLBC_define.h"
#include "constants.h"
/*----------------------------------------------------------------*
* calculation of auto correlation
*---------------------------------------------------------------*/
void autocorr(
float *r, /* (o) autocorrelation vector */
const float *x, /* (i) data vector */
int N, /* (i) length of data vector */
int order /* largest lag for calculated autocorrelations */
){
int lag, n;
float sum;
for (lag = 0; lag <= order; lag++) {
sum = 0;
for (n = 0; n < N - lag; n++) {
sum += x[n] * x[n+lag];
}
r[lag] = sum;
}
}
/*----------------------------------------------------------------*
* window multiplication
*---------------------------------------------------------------*/
void window(
float *z, /* (o) the windowed data */
const float *x, /* (i) the original data vector */
const float *y, /* (i) the window */
int N /* (i) length of all vectors */
){
int i;
for (i = 0; i < N; i++) {
z[i] = x[i] * y[i];
}
}
/*----------------------------------------------------------------*
* levinson-durbin solution for lpc coefficients
*---------------------------------------------------------------*/
void levdurb(
float *a, /* (o) lpc coefficient vector starting with 1.0
*/
float *k, /* (o) reflection coefficients */
float *r, /* (i) autocorrelation vector */
int order /* (i) order of lpc filter */
){
float sum, alpha;
int m, m_h, i;
a[0] = 1.0;
if (r[0] < EPS) { /* if r[0] <= 0, set LPC coeff. to zero */
for (i = 0; i < order; i++) {
k[i] = 0;
a[i+1] = 0;
}
} else {
a[1] = k[0] = -r[1]/r[0];
alpha = r[0] + r[1] * k[0];
for (m = 1; m < order; m++){
sum = r[m + 1];
for (i = 0; i < m; i++){
sum += a[i+1] * r[m - i];
}
k[m] = -sum / alpha;
alpha += k[m] * sum;
m_h = (m + 1) >> 1;
for (i = 0; i < m_h; i++){
sum = a[i+1] + k[m] * a[m - i];
a[m - i] += k[m] * a[i+1];
a[i+1] = sum;
}
a[m+1] = k[m];
}
}
}
/*----------------------------------------------------------------*
* interpolation between vectors
*---------------------------------------------------------------*/
void interpolate(
float *out, /* (o) the interpolated vector */
float *in1, /* (i) the first vector for the interpolation */
float *in2, /* (i) the second vector for the interpolation */
float coef, /* (i) interpolation weights */
int length /* (i) length of all vectors */
){
int i;
float invcoef;
invcoef = (float)1.0 - coef;
for (i = 0; i < length; i++) {
out[i] = coef * in1[i] + invcoef * in2[i];
}
}
/*----------------------------------------------------------------*
* lpc bandwidth expansion
*---------------------------------------------------------------*/
void bwexpand(
float *out, /* (o) the bandwidth expanded lpc coefficients */
float *in, /* (i) the lpc coefficients before bandwidth
expansion */
float coef, /* (i) the bandwidth expansion factor */
int length /* (i) the length of lpc coefficient vectors */
){
int i;
float chirp;
chirp = coef;
out[0] = in[0];
for (i = 1; i < length; i++) {
out[i] = chirp * in[i];
chirp *= coef;
}
}
/*----------------------------------------------------------------*
* vector quantization
*---------------------------------------------------------------*/
void vq(
float *Xq, /* (o) the quantized vector */
int *index, /* (o) the quantization index */
const float *CB,/* (i) the vector quantization codebook */
float *X, /* (i) the vector to quantize */
int n_cb, /* (i) the number of vectors in the codebook */
int dim /* (i) the dimension of all vectors */
){
int i, j;
int pos, minindex;
float dist, tmp, mindist;
pos = 0;
mindist = FLOAT_MAX;
minindex = 0;
for (j = 0; j < n_cb; j++) {
dist = X[0] - CB[pos];
dist *= dist;
for (i = 1; i < dim; i++) {
tmp = X[i] - CB[pos + i];
dist += tmp*tmp;
}
if (dist < mindist) {
mindist = dist;
minindex = j;
}
pos += dim;
}
for (i = 0; i < dim; i++) {
Xq[i] = CB[minindex*dim + i];
}
*index = minindex;
}
/*----------------------------------------------------------------*
* split vector quantization
*---------------------------------------------------------------*/
void SplitVQ(
float *qX, /* (o) the quantized vector */
int *index, /* (o) a vector of indexes for all vector
codebooks in the split */
float *X, /* (i) the vector to quantize */
const float *CB,/* (i) the quantizer codebook */
int nsplit, /* the number of vector splits */
const int *dim, /* the dimension of X and qX */
const int *cbsize /* the number of vectors in the codebook */
){
int cb_pos, X_pos, i;
cb_pos = 0;
X_pos= 0;
for (i = 0; i < nsplit; i++) {
vq(qX + X_pos, index + i, CB + cb_pos, X + X_pos,
cbsize[i], dim[i]);
X_pos += dim[i];
cb_pos += dim[i] * cbsize[i];
}
}
/*----------------------------------------------------------------*
* scalar quantization
*---------------------------------------------------------------*/
void sort_sq(
float *xq, /* (o) the quantized value */
int *index, /* (o) the quantization index */
float x, /* (i) the value to quantize */
const float *cb,/* (i) the quantization codebook */
int cb_size /* (i) the size of the quantization codebook */
){
int i;
if (x <= cb[0]) {
*index = 0;
*xq = cb[0];
} else {
i = 0;
while ((x > cb[i]) && i < cb_size - 1) {
i++;
}
if (x > ((cb[i] + cb[i - 1])/2)) {
*index = i;
*xq = cb[i];
} else {
*index = i - 1;
*xq = cb[i - 1];
}
}
}
/*----------------------------------------------------------------*
* check for stability of lsf coefficients
*---------------------------------------------------------------*/
int LSF_check( /* (o) 1 for stable lsf vectors and 0 for
nonstable ones */
float *lsf, /* (i) a table of lsf vectors */
int dim, /* (i) the dimension of each lsf vector */
int NoAn /* (i) the number of lsf vectors in the table */
){
int k,n,m, Nit=2, change=0,pos;
float tmp;
static float eps=(float)0.039; /* 50 Hz */
static float eps2=(float)0.0195;
static float maxlsf=(float)3.14; /* 4000 Hz */
static float minlsf=(float)0.01; /* 0 Hz */
/* LSF separation check*/
for (n=0;n<Nit;n++) { /* Run through a couple of times */
for (m=0;m<NoAn;m++) { /* Number of analyses per frame */
for (k=0;k<(dim-1);k++) {
pos=m*dim+k;
if ((lsf[pos+1]-lsf[pos])<eps) {
if (lsf[pos+1]<lsf[pos]) {
tmp=lsf[pos+1];
lsf[pos+1]= lsf[pos]+eps2;
lsf[pos]= lsf[pos+1]-eps2;
} else {
lsf[pos]-=eps2;
lsf[pos+1]+=eps2;
}
change=1;
}
if (lsf[pos]<minlsf) {
lsf[pos]=minlsf;
change=1;
}
if (lsf[pos]>maxlsf) {
lsf[pos]=maxlsf;
change=1;
}
}
}
}
return change;
}

@ -0,0 +1,93 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
helpfun.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_HELPFUN_H
#define __iLBC_HELPFUN_H
void autocorr(
float *r, /* (o) autocorrelation vector */
const float *x, /* (i) data vector */
int N, /* (i) length of data vector */
int order /* largest lag for calculated autocorrelations */
);
void window(
float *z, /* (o) the windowed data */
const float *x, /* (i) the original data vector */
const float *y, /* (i) the window */
int N /* (i) length of all vectors */
);
void levdurb(
float *a, /* (o) lpc coefficient vector starting
with 1.0 */
float *k, /* (o) reflection coefficients */
float *r, /* (i) autocorrelation vector */
int order /* (i) order of lpc filter */
);
void interpolate(
float *out, /* (o) the interpolated vector */
float *in1, /* (i) the first vector for the interpolation */
float *in2, /* (i) the second vector for the interpolation */
float coef, /* (i) interpolation weights */
int length /* (i) length of all vectors */
);
void bwexpand(
float *out, /* (o) the bandwidth expanded lpc coefficients */
float *in, /* (i) the lpc coefficients before bandwidth
expansion */
float coef, /* (i) the bandwidth expansion factor */
int length /* (i) the length of lpc coefficient vectors */
);
void vq(
float *Xq, /* (o) the quantized vector */
int *index, /* (o) the quantization index */
const float *CB,/* (i) the vector quantization codebook */
float *X, /* (i) the vector to quantize */
int n_cb, /* (i) the number of vectors in the codebook */
int dim /* (i) the dimension of all vectors */
);
void SplitVQ(
float *qX, /* (o) the quantized vector */
int *index, /* (o) a vector of indexes for all vector
codebooks in the split */
float *X, /* (i) the vector to quantize */
const float *CB,/* (i) the quantizer codebook */
int nsplit, /* the number of vector splits */
const int *dim, /* the dimension of X and qX */
const int *cbsize /* the number of vectors in the codebook */
);
void sort_sq(
float *xq, /* (o) the quantized value */
int *index, /* (o) the quantization index */
float x, /* (i) the value to quantize */
const float *cb,/* (i) the quantization codebook */
int cb_size /* (i) the size of the quantization codebook */
);
int LSF_check( /* (o) 1 for stable lsf vectors and 0 for
nonstable ones */
float *lsf, /* (i) a table of lsf vectors */
int dim, /* (i) the dimension of each lsf vector */
int NoAn /* (i) the number of lsf vectors in the table */
);
#endif

@ -0,0 +1,58 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
hpInput.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "constants.h"
/*----------------------------------------------------------------*
* Input high-pass filter
*---------------------------------------------------------------*/
void hpInput(
float *In, /* (i) vector to filter */
int len, /* (i) length of vector to filter */
float *Out, /* (o) the resulting filtered vector */
float *mem /* (i/o) the filter state */
){
int i;
float *pi, *po;
/* all-zero section*/
pi = &In[0];
po = &Out[0];
for (i=0; i<len; i++) {
*po = hpi_zero_coefsTbl[0] * (*pi);
*po += hpi_zero_coefsTbl[1] * mem[0];
*po += hpi_zero_coefsTbl[2] * mem[1];
mem[1] = mem[0];
mem[0] = *pi;
po++;
pi++;
}
/* all-pole section*/
po = &Out[0];
for (i=0; i<len; i++) {
*po -= hpi_pole_coefsTbl[1] * mem[2];
*po -= hpi_pole_coefsTbl[2] * mem[3];
mem[3] = mem[2];
mem[2] = *po;
po++;
}
}

@ -0,0 +1,26 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
hpInput.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_HPINPUT_H
#define __iLBC_HPINPUT_H
void hpInput(
float *In, /* (i) vector to filter */
int len, /* (i) length of vector to filter */
float *Out, /* (o) the resulting filtered vector */
float *mem /* (i/o) the filter state */
);
#endif

@ -0,0 +1,58 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
hpOutput.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "constants.h"
/*----------------------------------------------------------------*
* Output high-pass filter
*---------------------------------------------------------------*/
void hpOutput(
float *In, /* (i) vector to filter */
int len,/* (i) length of vector to filter */
float *Out, /* (o) the resulting filtered vector */
float *mem /* (i/o) the filter state */
){
int i;
float *pi, *po;
/* all-zero section*/
pi = &In[0];
po = &Out[0];
for (i=0; i<len; i++) {
*po = hpo_zero_coefsTbl[0] * (*pi);
*po += hpo_zero_coefsTbl[1] * mem[0];
*po += hpo_zero_coefsTbl[2] * mem[1];
mem[1] = mem[0];
mem[0] = *pi;
po++;
pi++;
}
/* all-pole section*/
po = &Out[0];
for (i=0; i<len; i++) {
*po -= hpo_pole_coefsTbl[1] * mem[2];
*po -= hpo_pole_coefsTbl[2] * mem[3];
mem[3] = mem[2];
mem[2] = *po;
po++;
}
}

@ -0,0 +1,26 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
hpOutput.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_HPOUTPUT_H
#define __iLBC_HPOUTPUT_H
void hpOutput(
float *In, /* (i) vector to filter */
int len,/* (i) length of vector to filter */
float *Out, /* (o) the resulting filtered vector */
float *mem /* (i/o) the filter state */
);
#endif

@ -0,0 +1,104 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iCBConstruct.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include "iLBC_define.h"
#include "gainquant.h"
#include "getCBvec.h"
/*----------------------------------------------------------------*
* Convert the codebook indexes to make the search easier
*---------------------------------------------------------------*/
void index_conv_enc(
int *index /* (i/o) Codebook indexes */
){
int k;
for (k=1;k<CB_NSTAGES;k++) {
if ((index[k]>=108)&&(index[k]<172)) {
index[k]-=64;
} else if (index[k]>=236) {
index[k]-=128;
} else {
/* ERROR */
}
}
}
void index_conv_dec(
int *index /* (i/o) Codebook indexes */
){
int k;
for (k=1;k<CB_NSTAGES;k++) {
if ((index[k]>=44)&&(index[k]<108)) {
index[k]+=64;
} else if ((index[k]>=108)&&(index[k]<128)) {
index[k]+=128;
} else {
/* ERROR */
}
}
}
/*----------------------------------------------------------------*
* Construct decoded vector from codebook and gains.
*---------------------------------------------------------------*/
void iCBConstruct(
float *decvector, /* (o) Decoded vector */
int *index, /* (i) Codebook indices */
int *gain_index,/* (i) Gain quantization indices */
float *mem, /* (i) Buffer for codevector construction */
int lMem, /* (i) Length of buffer */
int veclen, /* (i) Length of vector */
int nStages /* (i) Number of codebook stages */
){
int j,k;
float gain[CB_NSTAGES];
float cbvec[SUBL];
/* gain de-quantization */
gain[0] = gaindequant(gain_index[0], 1.0, 32);
if (nStages > 1) {
gain[1] = gaindequant(gain_index[1],
(float)fabs(gain[0]), 16);
}
if (nStages > 2) {
gain[2] = gaindequant(gain_index[2],
(float)fabs(gain[1]), 8);
}
/* codebook vector construction and construction of
total vector */
getCBvec(cbvec, mem, index[0], lMem, veclen);
for (j=0;j<veclen;j++){
decvector[j] = gain[0]*cbvec[j];
}
if (nStages > 1) {
for (k=1; k<nStages; k++) {
getCBvec(cbvec, mem, index[k], lMem, veclen);
for (j=0;j<veclen;j++) {
decvector[j] += gain[k]*cbvec[j];
}
}
}
}

@ -0,0 +1,37 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iCBConstruct.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_ICBCONSTRUCT_H
#define __iLBC_ICBCONSTRUCT_H
void index_conv_enc(
int *index /* (i/o) Codebook indexes */
);
void index_conv_dec(
int *index /* (i/o) Codebook indexes */
);
void iCBConstruct(
float *decvector, /* (o) Decoded vector */
int *index, /* (i) Codebook indices */
int *gain_index,/* (i) Gain quantization indices */
float *mem, /* (i) Buffer for codevector construction */
int lMem, /* (i) Length of buffer */
int veclen, /* (i) Length of vector */
int nStages /* (i) Number of codebook stages */
);
#endif

@ -0,0 +1,461 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iCBSearch.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
#include "gainquant.h"
#include "createCB.h"
#include "filter.h"
#include "constants.h"
/*----------------------------------------------------------------*
* Search routine for codebook encoding and gain quantization.
*---------------------------------------------------------------*/
void iCBSearch(
int *index, /* (o) Codebook indices */
int *gain_index,/* (o) Gain quantization indices */
float *intarget,/* (i) Target vector for encoding */
float *mem, /* (i) Buffer for codebook construction */
int lMem, /* (i) Length of buffer */
int lTarget, /* (i) Length of vector */
int nStages, /* (i) Number of codebook stages */
float *weightDenum, /* (i) weighting filter coefficients */
float *weightState, /* (i) weighting filter state */
int block /* (i) the subblock number */
){
int i, j, icount, stage, best_index, range, counter;
float max_measure, gain, measure, crossDot, ftmp;
float gains[CB_NSTAGES];
float target[SUBL];
int base_index, sInd, eInd, base_size;
int sIndAug=0, eIndAug=0;
float buf[CB_MEML+SUBL+2*LPC_FILTERORDER];
float invenergy[CB_EXPAND*128], energy[CB_EXPAND*128];
float *pp, *ppi=0, *ppo=0, *ppe=0;
float cbvectors[CB_MEML];
float tene, cene, cvec[SUBL];
float aug_vec[SUBL];
memset(cvec,0,SUBL*sizeof(float));
/* Determine size of codebook sections */
base_size=lMem-lTarget+1;
if (lTarget==SUBL) {
base_size=lMem-lTarget+1+lTarget/2;
}
/* setup buffer for weighting */
memcpy(buf,weightState,sizeof(float)*LPC_FILTERORDER);
memcpy(buf+LPC_FILTERORDER,mem,lMem*sizeof(float));
memcpy(buf+LPC_FILTERORDER+lMem,intarget,lTarget*sizeof(float));
/* weighting */
AllPoleFilter(buf+LPC_FILTERORDER, weightDenum,
lMem+lTarget, LPC_FILTERORDER);
/* Construct the codebook and target needed */
memcpy(target, buf+LPC_FILTERORDER+lMem, lTarget*sizeof(float));
tene=0.0;
for (i=0;i<lTarget;i++) {
tene+=target[i]*target[i];
}
/* Prepare search over one more codebook section. This section
is created by filtering the original buffer with a filter. */
filteredCBvecs(cbvectors, buf+LPC_FILTERORDER, lMem);
/* The Main Loop over stages */
for (stage=0;stage<nStages; stage++) {
range = search_rangeTbl[block][stage];
/* initialize search measure */
max_measure = (float)-10000000.0;
gain = (float)0.0;
best_index = 0;
/* Compute cross dot product between the target
and the CB memory */
crossDot=0.0;
pp=buf+LPC_FILTERORDER+lMem-lTarget;
for (j=0; j<lTarget; j++) {
crossDot += target[j]*(*pp++);
}
if (stage==0) {
/* Calculate energy in the first block of
'lTarget' sampels. */
ppe = energy;
ppi = buf+LPC_FILTERORDER+lMem-lTarget-1;
ppo = buf+LPC_FILTERORDER+lMem-1;
*ppe=0.0;
pp=buf+LPC_FILTERORDER+lMem-lTarget;
for (j=0; j<lTarget; j++) {
*ppe+=(*pp)*(*pp++);
}
if(*ppe>0.0) {
invenergy[0] = (float) 1.0 / (*ppe + EPS);
} else {
invenergy[0] = (float) 0.0;
}
ppe++;
measure=(float)-10000000.0;
if (crossDot > 0.0) {
measure = crossDot*crossDot*invenergy[0];
}
}
else {
measure = crossDot*crossDot*invenergy[0];
}
/* check if measure is better */
ftmp = crossDot*invenergy[0];
if ((measure>max_measure) && (fabs(ftmp)<CB_MAXGAIN)) {
best_index = 0;
max_measure = measure;
gain = ftmp;
}
/* loop over lags 40+ in the first codebook section,
full search */
for (icount=1; icount<range; icount++) {
/* calculate measure */
crossDot=0.0;
pp = buf+LPC_FILTERORDER+lMem-lTarget-icount;
for (j=0;j<lTarget;j++) {
crossDot += target[j]*(*pp++);
}
if (stage==0) {
*ppe++ = energy[icount-1] + (*ppi)*(*ppi) -
(*ppo)*(*ppo);
ppo--;
ppi--;
if(energy[icount]>0.0) {
invenergy[icount] =
(float)1.0/(energy[icount]+EPS);
} else {
invenergy[icount] = (float) 0.0;
}
measure=(float)-10000000.0;
if (crossDot > 0.0) {
measure = crossDot*crossDot*invenergy[icount];
}
}
else {
measure = crossDot*crossDot*invenergy[icount];
}
/* check if measure is better */
ftmp = crossDot*invenergy[icount];
if ((measure>max_measure) && (fabs(ftmp)<CB_MAXGAIN)){
best_index = icount;
max_measure = measure;
gain = ftmp;
}
}
/* Loop over lags 20-39 in the first codebook section,
* full search.
* The vectors are interpolated.
*/
if(lTarget==SUBL) {
/* Search for best possible lag and compute
the CB-vectors' energy. */
searchAugmentedCB(20, 39, stage, base_size-lTarget/2,
target, buf+LPC_FILTERORDER+lMem,
&max_measure, &best_index, &gain, energy, invenergy);
}
/* set search range for following codebook sections */
base_index=best_index;
/* unrestricted search */
if (CB_RESRANGE == -1) {
sInd=0;
eInd=range-1;
sIndAug=20;
eIndAug=39;
}
/* restriced search around best index from first
codebook section */
else {
/* Initialize search indices */
sIndAug=0;
eIndAug=0;
sInd=base_index-CB_RESRANGE/2;
eInd=sInd+CB_RESRANGE;
if(lTarget==SUBL) {
if (sInd<0) {
sIndAug = 40 + sInd;
eIndAug = 39;
sInd=0;
} else if( base_index < (base_size-20) ) {
if(eInd > range) {
sInd -= (eInd-range);
eInd = range;
}
} else { /* base_index >= (base_size-20) */
if(sInd < (base_size-20)) {
sIndAug = 20;
sInd = 0;
eInd = 0;
eIndAug = 19 + CB_RESRANGE;
if(eIndAug > 39) {
eInd = eIndAug-39;
eIndAug = 39;
}
} else {
sIndAug = 20 + sInd - (base_size-20);
eIndAug = 39;
sInd = 0;
eInd = CB_RESRANGE - (eIndAug-sIndAug+1);
}
}
} else { /* lTarget = 22 */
if (sInd < 0) {
eInd -= sInd;
sInd = 0;
}
if(eInd > range) {
sInd -= (eInd - range);
eInd = range;
}
}
}
/* search of higher codebook section */
/* index search range */
counter = sInd;
sInd += base_size;
eInd += base_size;
if(stage==0) {
ppe = energy+base_size;
*ppe=0.0;
pp=cbvectors+lMem-lTarget;
for (j=0; j<lTarget; j++) {
*ppe+=(*pp)*(*pp++);
}
ppi = cbvectors + lMem - 1 - lTarget;
ppo = cbvectors + lMem - 1;
for(j=0;j<(range-1);j++) {
*(ppe+1) = *ppe + (*ppi)*(*ppi) - (*ppo)*(*ppo);
ppo--;
ppi--;
ppe++;
}
}
/* loop over search range */
for (icount=sInd; icount<eInd; icount++) {
/* calculate measure */
crossDot=0.0;
pp=cbvectors + lMem - (counter++) - lTarget;
for (j=0;j<lTarget;j++) {
crossDot += target[j]*(*pp++);
}
if(energy[icount]>0.0) {
invenergy[icount] = (float) 1.0/(energy[icount]+EPS);
} else {
invenergy[icount] = (float) 0.0;
}
if (stage==0) {
measure=(float)-10000000.0;
if (crossDot > 0.0) {
measure = crossDot*crossDot*
invenergy[icount];
}
}
else {
measure = crossDot*crossDot*invenergy[icount];
}
/* check if measure is better */
ftmp = crossDot*invenergy[icount];
if ((measure>max_measure) && (fabs(ftmp)<CB_MAXGAIN)){
best_index = icount;
max_measure = measure;
gain = ftmp;
}
}
/* Search the augmented CB inside the limited range. */
if ((lTarget==SUBL)&&(sIndAug!=0)) {
searchAugmentedCB(sIndAug, eIndAug, stage,
2*base_size-20, target, cbvectors+lMem,
&max_measure, &best_index, &gain, energy, invenergy);
}
/* record best index */
index[stage] = best_index;
/* gain quantization */
if (stage==0){
if (gain<0.0){
gain = 0.0;
}
if (gain>CB_MAXGAIN) {
gain = (float)CB_MAXGAIN;
}
gain = gainquant(gain, 1.0, 32, &gain_index[stage]);
}
else {
if (stage==1) {
gain = gainquant(gain, (float)fabs(gains[stage-1]),
16, &gain_index[stage]);
} else {
gain = gainquant(gain, (float)fabs(gains[stage-1]),
8, &gain_index[stage]);
}
}
/* Extract the best (according to measure) codebook vector */
if(lTarget==(STATE_LEN-STATE_SHORT_LEN)) {
if(index[stage]<base_size) {
pp=buf+LPC_FILTERORDER+lMem-lTarget-index[stage];
} else {
pp=cbvectors+lMem-lTarget-
index[stage]+base_size;
}
} else {
if (index[stage]<base_size) {
if (index[stage]<(base_size-20)) {
pp=buf+LPC_FILTERORDER+lMem-lTarget-index[stage];
} else {
createAugmentedVec(index[stage]-base_size+40,
buf+LPC_FILTERORDER+lMem,aug_vec);
pp=aug_vec;
}
} else {
int filterno, lag_val;
filterno=index[stage]/base_size;
lag_val=index[stage]-filterno*base_size;
if (lag_val<(base_size-20)) {
pp=cbvectors+filterno*lMem-lTarget-
index[stage]+filterno*base_size;
} else {
createAugmentedVec(
index[stage]-(filterno+1)*base_size+40,
cbvectors+filterno*lMem,aug_vec);
pp=aug_vec;
}
}
}
/* Subtract the best codebook vector, according
to measure, from the target vector */
for(j=0;j<lTarget;j++){
cvec[j] += gain*(*pp);
target[j] -= gain*(*pp++);
}
/* record quantized gain */
gains[stage]=gain;
}/* end of Main Loop. for (stage=0;... */
/* Gain adjustment for energy matching */
cene=0.0;
for (i=0;i<lTarget;i++) {
cene+=cvec[i]*cvec[i];
}
j=gain_index[0];
for (i=gain_index[0];i<32;i++) {
ftmp=cene*gain_sq5Tbl[i]*gain_sq5Tbl[i];
if ((ftmp<(tene*gains[0]*gains[0])) &&
(gain_sq5Tbl[j]<(2.0*gains[0]))) {
j=i;
}
}
gain_index[0]=j;
}

@ -0,0 +1,32 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iCBSearch.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_ICBSEARCH_H
#define __iLBC_ICBSEARCH_H
void iCBSearch(
int *index, /* (o) Codebook indices */
int *gain_index,/* (o) Gain quantization indices */
float *intarget,/* (i) Target vector for encoding */
float *mem, /* (i) Buffer for codebook construction */
int lMem, /* (i) Length of buffer */
int lTarget, /* (i) Length of vector */
int nStages, /* (i) Number of codebook stages */
float *weightDenum, /* (i) weighting filter coefficients */
float *weightState, /* (i) weighting filter state */
int block /* (i) the subblock number */
);
#endif

@ -0,0 +1,519 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iLBC_decode.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <stdlib.h>
#include "iLBC_define.h"
#include "StateConstructW.h"
#include "LPCdecode.h"
#include "iCBConstruct.h"
#include "doCPLC.h"
#include "helpfun.h"
#include "constants.h"
#include "packing.h"
#include "string.h"
#include "enhancer.h"
#include "hpOutput.h"
#include "syntFilter.h"
/*----------------------------------------------------------------*
* Initiation of decoder instance.
*---------------------------------------------------------------*/
short initDecode( /* (o) Number of decoded
samples */
iLBC_Dec_Inst_t *iLBCdec_inst, /* (i/o) Decoder instance */
int use_enhancer /* (i) 1 to use enhancer
0 to run without
enhancer */
){
int i;
memset((*iLBCdec_inst).syntMem, 0,
LPC_FILTERORDER*sizeof(float));
memcpy((*iLBCdec_inst).lsfdeqold, lsfmeanTbl,
LPC_FILTERORDER*sizeof(float));
memset((*iLBCdec_inst).old_syntdenum, 0,
((LPC_FILTERORDER + 1)*NSUB)*sizeof(float));
for (i=0; i<NSUB; i++)
(*iLBCdec_inst).old_syntdenum[i*(LPC_FILTERORDER+1)]=1.0;
(*iLBCdec_inst).last_lag = 20;
(*iLBCdec_inst).prevLag = 120;
(*iLBCdec_inst).prevGain = 0.0;
(*iLBCdec_inst).consPLICount = 0;
(*iLBCdec_inst).prevPLI = 0;
(*iLBCdec_inst).prevLpc[0] = 1.0;
memset((*iLBCdec_inst).prevLpc+1,0,
LPC_FILTERORDER*sizeof(float));
memset((*iLBCdec_inst).prevResidual, 0, BLOCKL*sizeof(float));
(*iLBCdec_inst).seed=777;
memset((*iLBCdec_inst).hpomem, 0, 4*sizeof(float));
(*iLBCdec_inst).use_enhancer = use_enhancer;
memset((*iLBCdec_inst).enh_buf, 0, ENH_BUFL*sizeof(float));
for (i=0;i<ENH_NBLOCKS_TOT;i++)
(*iLBCdec_inst).enh_period[i]=(float)40.0;
iLBCdec_inst->prev_enh_pl = 0;
return (BLOCKL);
}
/*----------------------------------------------------------------*
* frame residual decoder function (subrutine to iLBC_decode)
*---------------------------------------------------------------*/
void Decode(
float *decresidual, /* (o) decoded residual frame */
int start, /* (i) location of start state */
int idxForMax, /* (i) codebook index for the maximum
value */
int *idxVec, /* (i) codebook indexes for the samples
in the start state */
float *syntdenum, /* (i) the decoded synthesis filter
coefficients */
int *cb_index, /* (i) the indexes for the adaptive
codebook */
int *gain_index, /* (i) the indexes for the corresponding
gains */
int *extra_cb_index,/* (i) the indexes for the adaptive
codebook part of start state */
int *extra_gain_index, /* (i) the indexes for the corresponding
gains */
int state_first /* (i) 1 if non adaptive part of start
state comes first 0 if that part
comes last */
){
float reverseDecresidual[BLOCKL], mem[CB_MEML];
int k, meml_gotten, Nfor, Nback, i;
int diff, start_pos;
int subcount, subframe;
diff = STATE_LEN - STATE_SHORT_LEN;
if (state_first == 1) {
start_pos = (start-1)*SUBL;
} else {
start_pos = (start-1)*SUBL + diff;
}
/* decode scalar part of start state */
StateConstructW(idxForMax, idxVec,
&syntdenum[(start-1)*(LPC_FILTERORDER+1)],
&decresidual[start_pos], STATE_SHORT_LEN);
if (state_first) { /* put adaptive part in the end */
/* setup memory */
memset(mem, 0, (CB_MEML-STATE_SHORT_LEN)*sizeof(float));
memcpy(mem+CB_MEML-STATE_SHORT_LEN, decresidual+start_pos,
STATE_SHORT_LEN*sizeof(float));
/* construct decoded vector */
iCBConstruct(&decresidual[start_pos+STATE_SHORT_LEN],
extra_cb_index, extra_gain_index, mem+CB_MEML-stMemLTbl,
stMemLTbl, diff, CB_NSTAGES);
}
else {/* put adaptive part in the beginning */
/* create reversed vectors for prediction */
for(k=0; k<diff; k++ ){
reverseDecresidual[k] =
decresidual[(start+1)*SUBL -1-(k+STATE_SHORT_LEN)];
}
/* setup memory */
meml_gotten = STATE_SHORT_LEN;
for( k=0; k<meml_gotten; k++){
mem[CB_MEML-1-k] = decresidual[start_pos + k];
}
memset(mem, 0, (CB_MEML-k)*sizeof(float));
/* construct decoded vector */
iCBConstruct(reverseDecresidual, extra_cb_index,
extra_gain_index, mem+CB_MEML-stMemLTbl, stMemLTbl,
diff, CB_NSTAGES);
/* get decoded residual from reversed vector */
for( k=0; k<diff; k++ ){
decresidual[start_pos-1-k] = reverseDecresidual[k];
}
}
/* counter for predicted subframes */
subcount=0;
/* forward prediction of subframes */
Nfor = NSUB-start-1;
if( Nfor > 0 ){
/* setup memory */
memset(mem, 0, (CB_MEML-STATE_LEN)*sizeof(float));
memcpy(mem+CB_MEML-STATE_LEN, decresidual+(start-1)*SUBL,
STATE_LEN*sizeof(float));
/* loop over subframes to encode */
for (subframe=0; subframe<Nfor; subframe++) {
/* construct decoded vector */
iCBConstruct(&decresidual[(start+1+subframe)*SUBL],
cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
mem+CB_MEML-memLfTbl[subcount],
memLfTbl[subcount], SUBL, CB_NSTAGES);
/* update memory */
memcpy(mem, mem+SUBL, (CB_MEML-SUBL)*sizeof(float));
memcpy(mem+CB_MEML-SUBL,
&decresidual[(start+1+subframe)*SUBL],
SUBL*sizeof(float));
subcount++;
}
}
/* backward prediction of subframes */
Nback = start-1;
if( Nback > 0 ){
/* setup memory */
meml_gotten = SUBL*(NSUB+1-start);
if( meml_gotten > CB_MEML ) {
meml_gotten=CB_MEML;
}
for( k=0; k<meml_gotten; k++) {
mem[CB_MEML-1-k] = decresidual[(start-1)*SUBL + k];
}
memset(mem, 0, (CB_MEML-k)*sizeof(float));
/* loop over subframes to decode */
for (subframe=0; subframe<Nback; subframe++) {
/* construct decoded vector */
iCBConstruct(&reverseDecresidual[subframe*SUBL],
cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES);
/* update memory */
memcpy(mem, mem+SUBL, (CB_MEML-SUBL)*sizeof(float));
memcpy(mem+CB_MEML-SUBL,
&reverseDecresidual[subframe*SUBL],
SUBL*sizeof(float));
subcount++;
}
/* get decoded residual from reversed vector */
for (i = 0; i < SUBL*Nback; i++)
decresidual[SUBL*Nback - i - 1] =
reverseDecresidual[i];
}
}
/*----------------------------------------------------------------*
* main decoder function
*---------------------------------------------------------------*/
void iLBC_decode(
float *decblock, /* (o) decoded signal block */
unsigned char *bytes, /* (i) encoded signal bits */
iLBC_Dec_Inst_t *iLBCdec_inst, /* (i/o) the decoder state
structure */
int mode /* (i) 0: bad packet, PLC,
1: normal */
){
float data[BLOCKL];
float lsfdeq[LPC_FILTERORDER*LPC_N];
float PLCresidual[BLOCKL], PLClpc[LPC_FILTERORDER + 1];
float zeros[BLOCKL], one[LPC_FILTERORDER + 1];
int k, i, start, idxForMax, pos, lastpart, ulp;
int lag, ilag;
float cc, maxcc;
int idxVec[STATE_LEN];
int check;
int gain_index[NASUB*CB_NSTAGES], extra_gain_index[CB_NSTAGES];
int cb_index[CB_NSTAGES*NASUB], extra_cb_index[CB_NSTAGES];
int lsf_i[LSF_NSPLIT*LPC_N];
int state_first;
unsigned char *pbytes;
float weightdenum[(LPC_FILTERORDER + 1)*NSUB];
int order_plus_one;
float syntdenum[NSUB*(LPC_FILTERORDER+1)];
float decresidual[BLOCKL];
if (mode>0) { /* the data are good */
/* decode data */
pbytes=bytes;
pos=0;
/* Set everything to zero before decoding */
for (k=0;k<6;k++) {
lsf_i[k]=0;
}
start=0;
state_first=0;
idxForMax=0;
for (k=0; k<STATE_SHORT_LEN; k++) {
idxVec[k]=0;
}
for (k=0;k<CB_NSTAGES;k++) {
extra_cb_index[k]=0;
}
for (k=0;k<CB_NSTAGES;k++) {
extra_gain_index[k]=0;
}
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
cb_index[i*CB_NSTAGES+k]=0;
}
}
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
gain_index[i*CB_NSTAGES+k]=0;
}
}
/* loop over ULP classes */
for (ulp=0; ulp<3; ulp++) {
/* LSF */
for (k=0;k<6;k++) {
unpack( &pbytes, &lastpart,
ulp_lsf_bitsTbl[k][ulp], &pos);
packcombine(&lsf_i[k], lastpart,
ulp_lsf_bitsTbl[k][ulp]);
}
/* Start block info */
unpack( &pbytes, &lastpart,
ulp_start_bitsTbl[ulp], &pos);
packcombine(&start, lastpart,
ulp_start_bitsTbl[ulp]);
unpack( &pbytes, &lastpart,
ulp_startfirst_bitsTbl[ulp], &pos);
packcombine(&state_first, lastpart,
ulp_startfirst_bitsTbl[ulp]);
unpack( &pbytes, &lastpart,
ulp_scale_bitsTbl[ulp], &pos);
packcombine(&idxForMax, lastpart,
ulp_scale_bitsTbl[ulp]);
for (k=0; k<STATE_SHORT_LEN; k++) {
unpack( &pbytes, &lastpart,
ulp_state_bitsTbl[ulp], &pos);
packcombine(idxVec+k, lastpart,
ulp_state_bitsTbl[ulp]);
}
/* 22 sample block */
for (k=0;k<CB_NSTAGES;k++) {
unpack( &pbytes, &lastpart,
ulp_extra_cb_indexTbl[k][ulp], &pos);
packcombine(extra_cb_index+k, lastpart,
ulp_extra_cb_indexTbl[k][ulp]);
}
for (k=0;k<CB_NSTAGES;k++) {
unpack( &pbytes, &lastpart,
ulp_extra_cb_gainTbl[k][ulp], &pos);
packcombine(extra_gain_index+k, lastpart,
ulp_extra_cb_gainTbl[k][ulp]);
}
/* The four 40 sample sub blocks */
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
unpack( &pbytes, &lastpart,
ulp_cb_indexTbl[i][k][ulp], &pos);
packcombine(cb_index+i*CB_NSTAGES+k, lastpart,
ulp_cb_indexTbl[i][k][ulp]);
}
}
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
unpack( &pbytes, &lastpart,
ulp_cb_gainTbl[i][k][ulp], &pos);
packcombine(gain_index+i*CB_NSTAGES+k, lastpart,
ulp_cb_gainTbl[i][k][ulp]);
}
}
}
/* Check for bit errors */
if( (start<1) || (start>5) )
mode = 0;
if (mode==1) { /* No bit errors was detected,
continue decoding */
/* adjust index */
index_conv_dec(cb_index);
/* decode the lsf */
SimplelsfDEQ(lsfdeq, lsf_i);
check=LSF_check(lsfdeq, LPC_FILTERORDER, LPC_N);
DecoderInterpolateLSF(syntdenum, weightdenum,
lsfdeq, LPC_FILTERORDER, iLBCdec_inst);
Decode(decresidual, start, idxForMax, idxVec,
syntdenum, cb_index, gain_index,
extra_cb_index, extra_gain_index,
state_first);
/* preparing the plc for a future loss! */
doThePLC(PLCresidual, PLClpc, 0, decresidual,
syntdenum + (LPC_FILTERORDER + 1)*(NSUB - 1),
(*iLBCdec_inst).last_lag, iLBCdec_inst);
memcpy(decresidual, PLCresidual, BLOCKL*sizeof(float));
}
}
if (mode == 0) {
/* the data is bad (either a PLC call
* was made or a bit error was detected)
*/
/* packet loss conceal */
memset(zeros, 0, BLOCKL*sizeof(float));
one[0] = 1;
memset(one+1, 0, LPC_FILTERORDER*sizeof(float));
start=0;
doThePLC(PLCresidual, PLClpc, 1, zeros, one,
(*iLBCdec_inst).last_lag, iLBCdec_inst);
memcpy(decresidual, PLCresidual, BLOCKL*sizeof(float));
order_plus_one = LPC_FILTERORDER + 1;
for (i = 0; i < NSUB; i++) {
memcpy(syntdenum+(i*order_plus_one), PLClpc,
order_plus_one*sizeof(float));
}
}
if ((*iLBCdec_inst).use_enhancer == 1) {
/* post filtering */
(*iLBCdec_inst).last_lag =
enhancerInterface(data, decresidual, iLBCdec_inst);
/* synthesis filtering */
for (i=0; i < 2; i++) {
syntFilter(data + i*SUBL,
(*iLBCdec_inst).old_syntdenum +
(i+4)*(LPC_FILTERORDER+1), SUBL,
(*iLBCdec_inst).syntMem);
}
for (i=2; i < NSUB; i++) {
syntFilter(data + i*SUBL,
syntdenum + (i-2)*(LPC_FILTERORDER+1), SUBL,
(*iLBCdec_inst).syntMem);
}
} else {
/* Find last lag */
lag = 20;
maxcc = xCorrCoef(&decresidual[BLOCKL-ENH_BLOCKL],
&decresidual[BLOCKL-ENH_BLOCKL-lag], ENH_BLOCKL);
for (ilag=21; ilag<120; ilag++) {
cc = xCorrCoef(&decresidual[BLOCKL-ENH_BLOCKL],
&decresidual[BLOCKL-ENH_BLOCKL-ilag], ENH_BLOCKL);
if (cc > maxcc) {
maxcc = cc;
lag = ilag;
}
}
(*iLBCdec_inst).last_lag = lag;
/* copy data and run synthesis filter */
memcpy(data, decresidual, BLOCKL*sizeof(float));
for (i=0; i < NSUB; i++) {
syntFilter(data + i*SUBL,
syntdenum + i*(LPC_FILTERORDER+1), SUBL,
(*iLBCdec_inst).syntMem);
}
}
/* high pass filtering on output if desired, otherwise
copy to out */
/*hpOutput(data, BLOCKL, decblock, (*iLBCdec_inst).hpomem);*/
memcpy(decblock,data,BLOCKL*sizeof(float));
memcpy((*iLBCdec_inst).old_syntdenum, syntdenum,
NSUB*(LPC_FILTERORDER+1)*sizeof(float));
iLBCdec_inst->prev_enh_pl=0;
if (mode==0) { /* PLC was used */
iLBCdec_inst->prev_enh_pl=1;
}
}

@ -0,0 +1,38 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iLBC_decode.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_ILBCDECODE_H
#define __iLBC_ILBCDECODE_H
#include "iLBC_define.h"
short initDecode( /* (o) Number of decoded
samples */
iLBC_Dec_Inst_t *iLBCdec_inst, /* (i/o) Decoder instance */
int use_enhancer /* (i) 1 to use enhancer
0 to run without
enhancer */
);
void iLBC_decode(
float *decblock, /* (o) decoded signal block */
unsigned char *bytes, /* (i) encoded signal bits */
iLBC_Dec_Inst_t *iLBCdec_inst, /* (i/o) the decoder state
structure */
int mode /* (i) 0: bad packet, PLC,
1: normal */
);
#endif

@ -0,0 +1,157 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iLBC_define.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <string.h>
#ifndef __iLBC_ILBCDEFINE_H
#define __iLBC_ILBCDEFINE_H
/* general codec settings */
#define FS (float)8000.0
#define BLOCKL 240
#define NSUB 6
#define NASUB 4
#define SUBL 40
#define STATE_LEN 80
#define STATE_SHORT_LEN 58
/* LPC settings */
#define LPC_FILTERORDER 10
#define LPC_CHIRP_SYNTDENUM (float)0.9025
#define LPC_CHIRP_WEIGHTDENUM (float)0.4222
#define LPC_LOOKBACK 60
#define LPC_N 2
#define LPC_ASYMDIFF 20
#define LPC_BW (float)60.0
#define LPC_WN (float)1.0001
#define LSF_NSPLIT 3
#define LSF_NUMBER_OF_STEPS 4
#define LPC_HALFORDER LPC_FILTERORDER/2
/* cb settings */
#define CB_NSTAGES 3
#define CB_EXPAND 2
#define CB_MEML 147
#define CB_FILTERLEN 2*4
#define CB_HALFFILTERLEN 4
#define CB_RESRANGE 34
#define CB_MAXGAIN (float) 1.3
/* enhancer */
#define ENH_BLOCKL 80 /* block length */
#define ENH_BLOCKL_HALF (ENH_BLOCKL/2)
#define ENH_HL 3 /* 2*ENH_HL+1 is number blocks
in said second sequence */
#define ENH_SLOP 2 /* max difference estimated and
correct pitch period */
#define ENH_PLOCSL 20 /* pitch-estimates and
pitch-locations buffer length */
#define ENH_OVERHANG 2
#define ENH_UPS0 4 /* upsampling rate */
#define ENH_FL0 3 /* 2*FLO+1 is the length of each filter */
#define ENH_VECTL (ENH_BLOCKL+2*ENH_FL0)
#define ENH_CORRDIM (2*ENH_SLOP+1)
#define ENH_NBLOCKS (BLOCKL/ENH_BLOCKL)
#define ENH_NBLOCKS_EXTRA 5
#define ENH_NBLOCKS_TOT 8 /* ENH_NBLOCKS+ENH_NBLOCKS_EXTRA */
#define ENH_BUFL (ENH_NBLOCKS_TOT)*ENH_BLOCKL
#define ENH_ALPHA0 (float)0.05
/* PLC */
#define PLC_BFIATTENUATE (float)0.9
#define PLC_GAINTHRESHOLD (float)0.5
#define PLC_BWEXPAND (float)0.99
#define PLC_XT_MIX (float)1.0
#define PLC_XB_MIX (float)0.0
#define PLC_YT_MIX (float)0.95
#define PLC_YB_MIX (float)0.0
/* Down sampling */
#define FILTERORDER_DS 7
#define DELAY_DS 3
#define FACTOR_DS 2
/* bit stream defs */
#define NO_OF_BYTES 50
#define STATE_BITS 3
#define BYTE_LEN 8
#define ULP_CLASSES 3
/* help parameters */
#define FLOAT_MAX (float)1.0e37
#define EPS (float)2.220446049250313e-016
#define PI (float)3.14159265358979323846
#define MIN_SAMPLE -32768
#define MAX_SAMPLE 32767
#define TWO_PI (float)6.283185307
#define PI2 (float)0.159154943
/* type definition encoder instance */
typedef struct iLBC_Enc_Inst_t_ {
/* analysis filter state */
float anaMem[LPC_FILTERORDER];
/* old lsf parameters for interpolation */
float lsfold[LPC_FILTERORDER];
float lsfdeqold[LPC_FILTERORDER];
/* signal buffer for LP analysis */
float lpc_buffer[LPC_LOOKBACK + BLOCKL];
/* state of input HP filter */
float hpimem[4];
} iLBC_Enc_Inst_t;
/* type definition decoder instance */
typedef struct iLBC_Dec_Inst_t_ {
/* synthesis filter state */
float syntMem[LPC_FILTERORDER];
/* old LSF for interpolation */
float lsfdeqold[LPC_FILTERORDER];
/* pitch lag estimated in enhancer and used in PLC */
int last_lag;
/* PLC state information */
int prevLag, consPLICount, prevPLI, prev_enh_pl;
float prevGain, prevLpc[LPC_FILTERORDER+1];
float prevResidual[NSUB*SUBL];
float energy;
unsigned long seed;
/* previous synthesis filter parameters */
float old_syntdenum[(LPC_FILTERORDER + 1)*NSUB];
/* state of output HP filter */
float hpomem[4];
/* enhancer state information */
int use_enhancer;
float enh_buf[ENH_BUFL];
float enh_period[ENH_NBLOCKS_TOT];
} iLBC_Dec_Inst_t;
#endif

@ -0,0 +1,446 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iLBC_encode.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
#include "LPCencode.h"
#include "FrameClassify.h"
#include "StateSearchW.h"
#include "StateConstructW.h"
#include "helpfun.h"
#include "constants.h"
#include "packing.h"
#include "iCBSearch.h"
#include "iCBConstruct.h"
#include "hpInput.h"
#include "anaFilter.h"
#include "syntFilter.h"
/*----------------------------------------------------------------*
* Initiation of encoder instance.
*---------------------------------------------------------------*/
short initEncode( /* (o) Number of bytes encoded */
iLBC_Enc_Inst_t *iLBCenc_inst /* (i/o) Encoder instance */
){
memset((*iLBCenc_inst).anaMem, 0,
LPC_FILTERORDER*sizeof(float));
memcpy((*iLBCenc_inst).lsfold, lsfmeanTbl,
LPC_FILTERORDER*sizeof(float));
memcpy((*iLBCenc_inst).lsfdeqold, lsfmeanTbl,
LPC_FILTERORDER*sizeof(float));
memset((*iLBCenc_inst).lpc_buffer, 0,
LPC_LOOKBACK*sizeof(float));
memset((*iLBCenc_inst).hpimem, 0, 4*sizeof(float));
return (NO_OF_BYTES);
}
/*----------------------------------------------------------------*
* main encoder function
*---------------------------------------------------------------*/
void iLBC_encode(
unsigned char *bytes, /* (o) encoded data bits iLBC */
float *block, /* (o) speech vector to encode */
iLBC_Enc_Inst_t *iLBCenc_inst /* (i/o) the general encoder
state */
){
float data[BLOCKL];
float residual[BLOCKL], reverseResidual[BLOCKL];
int start, idxForMax, idxVec[STATE_LEN];
float reverseDecresidual[BLOCKL], mem[CB_MEML];
int n, k, meml_gotten, Nfor, Nback, i, pos;
int gain_index[CB_NSTAGES*NASUB], extra_gain_index[CB_NSTAGES];
int cb_index[CB_NSTAGES*NASUB],extra_cb_index[CB_NSTAGES];
int lsf_i[LSF_NSPLIT*LPC_N];
unsigned char *pbytes;
int diff, start_pos, state_first;
float en1, en2;
int index, ulp, firstpart;
int subcount, subframe;
float weightState[LPC_FILTERORDER];
float syntdenum[NSUB*(LPC_FILTERORDER+1)];
float weightdenum[NSUB*(LPC_FILTERORDER+1)];
float decresidual[BLOCKL];
/* high pass filtering of input signal if such is not done
prior to calling this function */
/*hpInput(block, BLOCKL, data, (*iLBCenc_inst).hpimem);*/
/* otherwise simply copy */
memcpy(data,block,BLOCKL*sizeof(float));
/* LPC of hp filtered input data */
LPCencode(syntdenum, weightdenum, lsf_i, data,
iLBCenc_inst);
/* inverse filter to get residual */
for (n=0; n<NSUB; n++ ) {
anaFilter(&data[n*SUBL], &syntdenum[n*(LPC_FILTERORDER+1)],
SUBL, &residual[n*SUBL], (*iLBCenc_inst).anaMem);
}
/* find state location */
start = FrameClassify(residual);
/* check if state should be in first or last part of the
two subframes */
diff = STATE_LEN - STATE_SHORT_LEN;
en1 = 0;
index = (start-1)*SUBL;
for (i = 0; i < STATE_SHORT_LEN; i++) {
en1 += residual[index+i]*residual[index+i];
}
en2 = 0;
index = (start-1)*SUBL+diff;
for (i = 0; i < STATE_SHORT_LEN; i++) {
en2 += residual[index+i]*residual[index+i];
}
if (en1 > en2) {
state_first = 1;
start_pos = (start-1)*SUBL;
} else {
state_first = 0;
start_pos = (start-1)*SUBL + diff;
}
/* scalar quantization of state */
StateSearchW(&residual[start_pos],
&syntdenum[(start-1)*(LPC_FILTERORDER+1)],
&weightdenum[(start-1)*(LPC_FILTERORDER+1)], &idxForMax,
idxVec, STATE_SHORT_LEN, state_first);
StateConstructW(idxForMax, idxVec,
&syntdenum[(start-1)*(LPC_FILTERORDER+1)],
&decresidual[start_pos], STATE_SHORT_LEN);
/* predictive quantization in state */
if (state_first) { /* put adaptive part in the end */
/* setup memory */
memset(mem, 0, (CB_MEML-STATE_SHORT_LEN)*sizeof(float));
memcpy(mem+CB_MEML-STATE_SHORT_LEN, decresidual+start_pos,
STATE_SHORT_LEN*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* encode subframes */
iCBSearch(extra_cb_index, extra_gain_index,
&residual[start_pos+STATE_SHORT_LEN],
mem+CB_MEML-stMemLTbl,
stMemLTbl, diff, CB_NSTAGES,
&weightdenum[start*(LPC_FILTERORDER+1)], weightState, 0);
/* construct decoded vector */
iCBConstruct(&decresidual[start_pos+STATE_SHORT_LEN],
extra_cb_index, extra_gain_index, mem+CB_MEML-stMemLTbl,
stMemLTbl, diff, CB_NSTAGES);
}
else { /* put adaptive part in the beginning */
/* create reversed vectors for prediction */
for(k=0; k<diff; k++ ){
reverseResidual[k] = residual[(start+1)*SUBL -1
-(k+STATE_SHORT_LEN)];
}
/* setup memory */
meml_gotten = STATE_SHORT_LEN;
for( k=0; k<meml_gotten; k++){
mem[CB_MEML-1-k] = decresidual[start_pos + k];
}
memset(mem, 0, (CB_MEML-k)*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* encode subframes */
iCBSearch(extra_cb_index, extra_gain_index,
reverseResidual, mem+CB_MEML-stMemLTbl, stMemLTbl, diff,
CB_NSTAGES, &weightdenum[(start-1)*(LPC_FILTERORDER+1)],
weightState, 0);
/* construct decoded vector */
iCBConstruct(reverseDecresidual, extra_cb_index,
extra_gain_index, mem+CB_MEML-stMemLTbl, stMemLTbl, diff,
CB_NSTAGES);
/* get decoded residual from reversed vector */
for( k=0; k<diff; k++ ){
decresidual[start_pos-1-k] = reverseDecresidual[k];
}
}
/* counter for predicted subframes */
subcount=0;
/* forward prediction of subframes */
Nfor = NSUB-start-1;
if( Nfor > 0 ){
/* setup memory */
memset(mem, 0, (CB_MEML-STATE_LEN)*sizeof(float));
memcpy(mem+CB_MEML-STATE_LEN, decresidual+(start-1)*SUBL,
STATE_LEN*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* loop over subframes to encode */
for (subframe=0; subframe<Nfor; subframe++) {
/* encode subframe */
iCBSearch(cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
&residual[(start+1+subframe)*SUBL],
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES,
&weightdenum[(start+1+subframe)*(LPC_FILTERORDER+1)],
weightState, subcount+1);
/* construct decoded vector */
iCBConstruct(&decresidual[(start+1+subframe)*SUBL],
cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES);
/* update memory */
memcpy(mem, mem+SUBL, (CB_MEML-SUBL)*sizeof(float));
memcpy(mem+CB_MEML-SUBL,
&decresidual[(start+1+subframe)*SUBL],
SUBL*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
subcount++;
}
}
/* backward prediction of subframes */
Nback = start-1;
if( Nback > 0 ){
/* create reverse order vectors */
for( n=0; n<Nback; n++ ){
for( k=0; k<SUBL; k++ ){
reverseResidual[n*SUBL+k] =
residual[(start-1)*SUBL-1-n*SUBL-k];
reverseDecresidual[n*SUBL+k] =
decresidual[(start-1)*SUBL-1-n*SUBL-k];
}
}
/* setup memory */
meml_gotten = SUBL*(NSUB+1-start);
if( meml_gotten > CB_MEML ) {
meml_gotten=CB_MEML;
}
for( k=0; k<meml_gotten; k++) {
mem[CB_MEML-1-k] = decresidual[(start-1)*SUBL + k];
}
memset(mem, 0, (CB_MEML-k)*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* loop over subframes to encode */
for (subframe=0; subframe<Nback; subframe++) {
/* encode subframe */
iCBSearch(cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
&reverseResidual[subframe*SUBL],
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES,
&weightdenum[(start-2-subframe)*(LPC_FILTERORDER+1)],
weightState, subcount+1);
/* construct decoded vector */
iCBConstruct(&reverseDecresidual[subframe*SUBL],
cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
mem+CB_MEML-memLfTbl[subcount],
memLfTbl[subcount], SUBL, CB_NSTAGES);
/* update memory */
memcpy(mem, mem+SUBL, (CB_MEML-SUBL)*sizeof(float));
memcpy(mem+CB_MEML-SUBL,
&reverseDecresidual[subframe*SUBL],
SUBL*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
subcount++;
}
/* get decoded residual from reversed vector */
for (i = 0; i < SUBL*Nback; i++) {
decresidual[SUBL*Nback - i - 1] =
reverseDecresidual[i];
}
}
/* end encoding part */
/* adjust index */
index_conv_enc(cb_index);
/* pack bytes */
pbytes=bytes;
pos=0;
/* loop over the 3 ULP classes */
for (ulp=0; ulp<3; ulp++) {
/* LSF */
for (k=0;k<6;k++) {
packsplit(&lsf_i[k], &firstpart, &lsf_i[k],
ulp_lsf_bitsTbl[k][ulp],
ulp_lsf_bitsTbl[k][ulp]+
ulp_lsf_bitsTbl[k][ulp+1]+
ulp_lsf_bitsTbl[k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_lsf_bitsTbl[k][ulp], &pos);
}
/* Start block info */
packsplit(&start, &firstpart, &start,
ulp_start_bitsTbl[ulp],
ulp_start_bitsTbl[ulp]+
ulp_start_bitsTbl[ulp+1]+
ulp_start_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_start_bitsTbl[ulp], &pos);
packsplit(&state_first, &firstpart, &state_first,
ulp_startfirst_bitsTbl[ulp],
ulp_startfirst_bitsTbl[ulp]+
ulp_startfirst_bitsTbl[ulp+1]+
ulp_startfirst_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_startfirst_bitsTbl[ulp], &pos);
packsplit(&idxForMax, &firstpart, &idxForMax,
ulp_scale_bitsTbl[ulp], ulp_scale_bitsTbl[ulp]+
ulp_scale_bitsTbl[ulp+1]+ulp_scale_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_scale_bitsTbl[ulp], &pos);
for (k=0; k<STATE_SHORT_LEN; k++) {
packsplit(idxVec+k, &firstpart, idxVec+k,
ulp_state_bitsTbl[ulp],
ulp_state_bitsTbl[ulp]+
ulp_state_bitsTbl[ulp+1]+
ulp_state_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_state_bitsTbl[ulp], &pos);
}
/* 22 sample block */
for (k=0;k<CB_NSTAGES;k++) {
packsplit(extra_cb_index+k, &firstpart,
extra_cb_index+k,
ulp_extra_cb_indexTbl[k][ulp],
ulp_extra_cb_indexTbl[k][ulp]+
ulp_extra_cb_indexTbl[k][ulp+1]+
ulp_extra_cb_indexTbl[k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_extra_cb_indexTbl[k][ulp], &pos);
}
for (k=0;k<CB_NSTAGES;k++) {
packsplit(extra_gain_index+k, &firstpart,
extra_gain_index+k,
ulp_extra_cb_gainTbl[k][ulp],
ulp_extra_cb_gainTbl[k][ulp]+
ulp_extra_cb_gainTbl[k][ulp+1]+
ulp_extra_cb_gainTbl[k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_extra_cb_gainTbl[k][ulp], &pos);
}
/* The four 40 sample sub blocks */
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
packsplit(cb_index+i*CB_NSTAGES+k, &firstpart,
cb_index+i*CB_NSTAGES+k,
ulp_cb_indexTbl[i][k][ulp],
ulp_cb_indexTbl[i][k][ulp]+
ulp_cb_indexTbl[i][k][ulp+1]+
ulp_cb_indexTbl[i][k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_cb_indexTbl[i][k][ulp], &pos);
}
}
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
packsplit(gain_index+i*CB_NSTAGES+k, &firstpart,
gain_index+i*CB_NSTAGES+k,
ulp_cb_gainTbl[i][k][ulp],
ulp_cb_gainTbl[i][k][ulp]+
ulp_cb_gainTbl[i][k][ulp+1]+
ulp_cb_gainTbl[i][k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_cb_gainTbl[i][k][ulp], &pos);
}
}
}
/* set the last unused bit to zero */
dopack( &pbytes, 0, 1, &pos);
}

@ -0,0 +1,32 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iLBC_encode.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_ILBCENCODE_H
#define __iLBC_ILBCENCODE_H
#include "iLBC_define.h"
short initEncode( /* (o) Number of bytes encoded */
iLBC_Enc_Inst_t *iLBCenc_inst /* (i/o) Encoder instance */
);
void iLBC_encode(
unsigned char *bytes, /* (o) encoded data bits iLBC */
float *block, /* (o) speech vector to encode */
iLBC_Enc_Inst_t *iLBCenc_inst /* (i/o) the general encoder
state */
);
#endif

@ -0,0 +1,252 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
lsf.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <string.h>
#include <math.h>
#include "iLBC_define.h"
/*----------------------------------------------------------------*
* conversion from lpc coefficients to lsf coefficients
*---------------------------------------------------------------*/
void a2lsf(
float *freq,/* (o) lsf coefficients */
float *a /* (i) lpc coefficients */
){
float steps[LSF_NUMBER_OF_STEPS] =
{(float)0.00635, (float)0.003175, (float)0.0015875,
(float)0.00079375};
float step;
int step_idx;
int lsp_index;
float p[LPC_HALFORDER];
float q[LPC_HALFORDER];
float p_pre[LPC_HALFORDER];
float q_pre[LPC_HALFORDER];
float old_p, old_q, *old;
float *pq_coef;
float omega, old_omega;
int i;
float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;
for (i = 0; i < LPC_HALFORDER; i++){
p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);
q[i] = a[LPC_FILTERORDER - i] - a[i + 1];
}
p_pre[0] = (float)-1.0 - p[0];
p_pre[1] = - p_pre[0] - p[1];
p_pre[2] = - p_pre[1] - p[2];
p_pre[3] = - p_pre[2] - p[3];
p_pre[4] = - p_pre[3] - p[4];
p_pre[4] = p_pre[4] / 2;
q_pre[0] = (float)1.0 - q[0];
q_pre[1] = q_pre[0] - q[1];
q_pre[2] = q_pre[1] - q[2];
q_pre[3] = q_pre[2] - q[3];
q_pre[4] = q_pre[3] - q[4];
q_pre[4] = q_pre[4] / 2;
omega = 0.0;
old_omega = 0.0;
old_p = FLOAT_MAX;
old_q = FLOAT_MAX;
/* Here we loop through lsp_index to find all the
LPC_FILTERORDER roots for omega. */
for (lsp_index = 0; lsp_index < LPC_FILTERORDER; lsp_index++){
/* Depending on lsp_index being even or odd, we
alternatively solve the roots for the two LSP equations. */
if ((lsp_index & 0x1) == 0) {
pq_coef = p_pre;
old = &old_p;
} else {
pq_coef = q_pre;
old = &old_q;
}
/* Start with low resolution grid */
for (step_idx = 0, step = steps[step_idx];
step_idx < LSF_NUMBER_OF_STEPS;){
/* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */
hlp = (float)cos(omega * TWO_PI);
hlp1 = (float)2.0 * hlp + pq_coef[0];
hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +
pq_coef[1];
hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];
hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];
hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];
if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){
if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){
if (fabs(hlp5) >= fabs(*old)) {
freq[lsp_index] = omega - step;
} else {
freq[lsp_index] = omega;
}
if ((*old) >= 0.0){
*old = (float)-1.0 * FLOAT_MAX;
} else {
*old = FLOAT_MAX;
}
omega = old_omega;
step_idx = 0;
step_idx = LSF_NUMBER_OF_STEPS;
} else {
if (step_idx == 0) {
old_omega = omega;
}
step_idx++;
omega -= steps[step_idx];
/* Go back one grid step */
step = steps[step_idx];
}
} else {
/* increment omega until they are of different sign,
and we know there is at least one root between omega
and old_omega */
*old = hlp5;
omega += step;
}
}
}
for (i = 0; i < LPC_FILTERORDER; i++) {
freq[i] = freq[i] * TWO_PI;
}
}
/*----------------------------------------------------------------*
* conversion from lsf coefficients to lpc coefficients
*---------------------------------------------------------------*/
void lsf2a(
float *a_coef, /* (o) lpc coefficients */
float *freq /* (i) lsf coefficients */
){
int i, j;
float hlp;
float p[LPC_HALFORDER], q[LPC_HALFORDER];
float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], a2[LPC_HALFORDER];
float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], b2[LPC_HALFORDER];
for (i = 0; i < LPC_FILTERORDER; i++) {
freq[i] = freq[i] * PI2;
}
/* Check input for ill-conditioned cases. This part is not
found in the TIA standard. It involves the following 2 IF
blocks. If "freq" is judged ill-conditioned, then we first
modify freq[0] and freq[LPC_HALFORDER-1] (normally
LPC_HALFORDER = 10 for LPC applications), then we adjust
the other "freq" values slightly */
if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){
if (freq[0] <= 0.0) {
freq[0] = (float)0.022;
}
if (freq[LPC_FILTERORDER - 1] >= 0.5) {
freq[LPC_FILTERORDER - 1] = (float)0.499;
}
hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /
(float) (LPC_FILTERORDER - 1);
for (i = 1; i < LPC_FILTERORDER; i++) {
freq[i] = freq[i - 1] + hlp;
}
}
memset(a1, 0, LPC_HALFORDER*sizeof(float));
memset(a2, 0, LPC_HALFORDER*sizeof(float));
memset(b1, 0, LPC_HALFORDER*sizeof(float));
memset(b2, 0, LPC_HALFORDER*sizeof(float));
memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));
memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));
/* p[i] and q[i] compute cos(2*pi*omega_{2j}) and
cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.
Note that for this code p[i] specifies the coefficients
used in .Q_A(z) while q[i] specifies the coefficients used
in .P_A(z) */
for (i = 0; i < LPC_HALFORDER; i++){
p[i] = (float)cos(TWO_PI * freq[2 * i]);
q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);
}
a[0] = 0.25;
b[0] = 0.25;
for (i = 0; i < LPC_HALFORDER; i++){
a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
a2[i] = a1[i];
a1[i] = a[i];
b2[i] = b1[i];
b1[i] = b[i];
}
for (j = 0; j < LPC_FILTERORDER; j++){
if (j == 0) {
a[0] = 0.25;
b[0] = -0.25;
} else {
a[0] = b[0] = 0.0;
}
for (i = 0; i < LPC_HALFORDER; i++){
a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
a2[i] = a1[i];
a1[i] = a[i];
b2[i] = b1[i];
b1[i] = b[i];
}
a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);
}
a_coef[0] = 1.0;
}

@ -0,0 +1,29 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
lsf.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_LSF_H
#define __iLBC_LSF_H
void a2lsf(
float *freq,/* (o) lsf coefficients */
float *a /* (i) lpc coefficients */
);
void lsf2a(
float *a_coef, /* (o) lpc coefficients */
float *freq /* (i) lsf coefficients */
);
#endif

@ -0,0 +1,169 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
packing.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <stdlib.h>
#include "iLBC_define.h"
#include "constants.h"
#include "helpfun.h"
#include "string.h"
/*----------------------------------------------------------------*
* splitting an integer into first most significant bits and
* remaining least significant bits
*---------------------------------------------------------------*/
void packsplit(
int *index, /* (i) the value to split */
int *firstpart, /* (o) the value specified by most
significant bits */
int *rest, /* (o) the value specified by least
significant bits */
int bitno_firstpart, /* (i) number of bits in most
significant part */
int bitno_total /* (i) number of bits in full range
of value */
){
int bitno_rest = bitno_total-bitno_firstpart;
*firstpart = *index>>(bitno_rest);
*rest = *index-(*firstpart<<(bitno_rest));
}
/*----------------------------------------------------------------*
* combining a value corresponding to msb's with a value
* corresponding to lsb's
*---------------------------------------------------------------*/
void packcombine(
int *index, /* (i/o) the msb value in the
combined value out */
int rest, /* (i) the lsb value */
int bitno_rest /* (i) the number of bits in the
lsb part */
){
*index = *index<<bitno_rest;
*index += rest;
}
/*----------------------------------------------------------------*
* packing of bits into bitstream, i.e., vector of bytes
*---------------------------------------------------------------*/
void dopack(
unsigned char **bitstream, /* (i/o) on entrance pointer to place
in bitstream to pack new data,
on exit pointer to place in
bitstream to pack future
data */
int index, /* (i) the value to pack */
int bitno, /* (i) the number of bits that the
value will fit within */
int *pos /* (i/o) write position in the
current byte */
){
int posLeft;
/* Clear the bits before starting in a new byte */
if ((*pos)==0) {
**bitstream=0;
}
while (bitno>0) {
/* Jump to the next byte if end of this byte is reached*/
if (*pos==8) {
*pos=0;
(*bitstream)++;
**bitstream=0;
}
posLeft=8-(*pos);
/* Insert index into the bitstream */
if (bitno <= posLeft) {
**bitstream |= (unsigned char)(index<<(posLeft-bitno));
*pos+=bitno;
bitno=0;
} else {
**bitstream |= (unsigned char)(index>>(bitno-posLeft));
*pos=8;
index-=((index>>(bitno-posLeft))<<(bitno-posLeft));
bitno-=posLeft;
}
}
}
/*----------------------------------------------------------------*
* unpacking of bits from bitstream, i.e., vector of bytes
*---------------------------------------------------------------*/
void unpack(
unsigned char **bitstream, /* (i/o) on entrance pointer to
place in bitstream to
unpack new data from, on
exit pointer to place in
bitstream to unpack future
data from */
int *index, /* (o) resulting value */
int bitno, /* (i) number of bits used to
represent the value */
int *pos /* (i/o) read position in the
current byte */
){
int BitsLeft;
*index=0;
while (bitno>0) {
/* move forward in bitstream when the end of the
byte is reached */
if (*pos==8) {
*pos=0;
(*bitstream)++;
}
BitsLeft=8-(*pos);
/* Extract bits to index */
if (BitsLeft>=bitno) {
*index+=((((**bitstream)<<(*pos)) & 0xFF)>>(8-bitno));
*pos+=bitno;
bitno=0;
} else {
if ((8-bitno)>0) {
*index+=((((**bitstream)<<(*pos)) & 0xFF)>>
(8-bitno));
*pos=8;
} else {
*index+=(((int)(((**bitstream)<<(*pos)) & 0xFF))<<
(bitno-8));
*pos=8;
}
bitno-=BitsLeft;
}
}
}

@ -0,0 +1,65 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
packing.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __PACKING_H
#define __PACKING_H
void packsplit(
int *index, /* (i) the value to split */
int *firstpart, /* (o) the value specified by most
significant bits */
int *rest, /* (o) the value specified by least
significant bits */
int bitno_firstpart, /* (i) number of bits in most
significant part */
int bitno_total /* (i) number of bits in full range
of value */
);
void packcombine(
int *index, /* (i/o) the msb value in the
combined value out */
int rest, /* (i) the lsb value */
int bitno_rest /* (i) the number of bits in the
lsb part */
);
void dopack(
unsigned char **bitstream, /* (i/o) on entrance pointer to place
in bitstream to pack new data,
on exit pointer to place in
bitstream to pack future
data */
int index, /* (i) the value to pack */
int bitno, /* (i) the number of bits that the
value will fit within */
int *pos /* (i/o) write position in the
current byte */
);
void unpack(
unsigned char **bitstream, /* (i/o) on entrance pointer to place
in bitstream to unpack
new data from, on exit pointer
to place in bitstream to
unpack future data from */
int *index, /* (o) resulting value */
int bitno, /* (i) number of bits used to
represent the value */
int *pos /* (i/o) read position in the
current byte */
);
#endif

@ -0,0 +1,65 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
syntFilter.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include "iLBC_define.h"
/*----------------------------------------------------------------*
* LP synthesis filter.
*---------------------------------------------------------------*/
void syntFilter(
float *Out, /* (i/o) Signal to be filtered */
float *a, /* (i) LP parameters */
int len, /* (i) Length of signal */
float *mem /* (i/o) Filter state */
){
int i, j;
float *po, *pi, *pa, *pm;
po=Out;
/* Filter first part using memory from past */
for (i=0;i<LPC_FILTERORDER;i++) {
pi=&Out[i-1];
pa=&a[1];
pm=&mem[LPC_FILTERORDER-1];
for (j=1;j<=i;j++) {
*po-=(*pa++)*(*pi--);
}
for (j=i+1;j<LPC_FILTERORDER+1;j++) {
*po-=(*pa++)*(*pm--);
}
po++;
}
/* Filter last part where the state is entierly in
the output vector */
for (i=LPC_FILTERORDER;i<len;i++) {
pi=&Out[i-1];
pa=&a[1];
for (j=1;j<LPC_FILTERORDER+1;j++) {
*po-=(*pa++)*(*pi--);
}
po++;
}
/* Update state vector */
memcpy(mem, &Out[len-LPC_FILTERORDER],
LPC_FILTERORDER*sizeof(float));
}

@ -0,0 +1,26 @@
/******************************************************************
iLBC Speech Coder ANSI-C Source Code
syntFilter.h
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#ifndef __iLBC_SYNTFILTER_H
#define __iLBC_SYNTFILTER_H
void syntFilter(
float *Out, /* (i/o) Signal to be filtered */
float *a, /* (i) LP parameters */
int len, /* (i) Length of signal */
float *mem /* (i/o) Filter state */
);
#endif

@ -0,0 +1,18 @@
/*
* Raw 8-bit data
*
* Source: ilbc.out
*
* Copyright (C) 1999, Mark Spencer and Linux Support Services
*
* Distributed under the terms of the GNU General Public License
*
*/
static unsigned char ilbc_slin_ex[] = {
0xff, 0xa0, 0xff, 0xfa, 0xf, 0x60, 0x12, 0x11, 0xa2, 0x47,
0x22, 0x8c, 00, 00, 0x1, 0x2, 0x80, 0x43, 0xa0, 0x40,
0x33, 0xff, 0xcf, 0xc0, 0xf3, 0xf3, 0x3f, 0x8f, 0x3f, 0xff,
0xff, 0xff, 0xff, 0xfc, 0xf9, 0xe5, 0x55, 0x78, 0xb, 0xca,
0xe1, 0x27, 0x94, 0x7b, 0xa8, 0x91, 0x2c, 0x36, 0x8, 0x56,
00, 00 };

@ -0,0 +1,28 @@
/*
* Signed 16-bit audio data
*
* Source: gsm.example
*
* Copyright (C) 1999, Mark Spencer
*
* Distributed under the terms of the GNU General Public License
*
*/
static signed short slin_ilbc_ex[] = {
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 0xfff8, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 0x0008, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
0x0008, 000000, 000000, 000000, 0xfff8, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000, 000000,
000000, 000000, 000000, 000000, 000000, 000000, 0x0008, 000000, 000000, 000000 };

@ -365,6 +365,8 @@ int ast_getformatbyname(char *name)
return AST_FORMAT_G729A;
else if (!strcasecmp(name, "speex"))
return AST_FORMAT_SPEEX;
else if (!strcasecmp(name, "ilbc"))
return AST_FORMAT_ILBC;
else if (!strcasecmp(name, "all"))
return 0x7FFFFFFF;
return 0;

@ -131,6 +131,8 @@ struct ast_frame_chain {
#define AST_FORMAT_G729A (1 << 8)
/*! SpeeX Free Compression */
#define AST_FORMAT_SPEEX (1 << 9)
/*! iLBC Free Compression */
#define AST_FORMAT_ILBC (1 << 10)
/*! Maximum audio format */
#define AST_FORMAT_MAX_AUDIO (1 << 15)
/*! JPEG Images */

21
rtp.c

@ -30,6 +30,7 @@
#include <asterisk/logger.h>
#include <asterisk/options.h>
#include <asterisk/channel.h>
#include <asterisk/acl.h>
#include <asterisk/channel_pvt.h>
#define TYPE_SILENCE 0x2
@ -332,6 +333,9 @@ struct ast_frame *ast_rtp_read(struct ast_rtp *rtp)
case AST_FORMAT_GSM:
rtp->f.samples = 160 * (rtp->f.datalen / 33);
break;
case AST_FORMAT_ILBC:
rtp->f.samples = 240 * (rtp->f.datalen / 52);
break;
case AST_FORMAT_ADPCM:
rtp->f.samples = rtp->f.datalen * 2;
break;
@ -370,6 +374,7 @@ static struct {
{{1, AST_FORMAT_LPC10}, "audio", "LPC"},
{{1, AST_FORMAT_G729A}, "audio", "G729"},
{{1, AST_FORMAT_SPEEX}, "audio", "SPEEX"},
{{1, AST_FORMAT_ILBC}, "audio", "iLBC"},
{{0, AST_RTP_DTMF}, "audio", "telephone-event"},
{{0, AST_RTP_CN}, "audio", "CN"},
{{1, AST_FORMAT_JPEG}, "video", "JPEG"},
@ -401,6 +406,7 @@ static struct rtpPayloadType static_RTP_PT[MAX_RTP_PT] = {
[34] = {1, AST_FORMAT_H263},
[101] = {0, AST_RTP_DTMF},
[110] = {1, AST_FORMAT_SPEEX},
[120] = {1, AST_FORMAT_ILBC},
};
void ast_rtp_pt_clear(struct ast_rtp* rtp)
@ -710,6 +716,9 @@ static int ast_rtp_raw_write(struct ast_rtp *rtp, struct ast_frame *f, int codec
case AST_FORMAT_GSM:
pred = rtp->lastts + (f->datalen * 160 / 33);
break;
case AST_FORMAT_ILBC:
pred = rtp->lastts + (f->datalen * 240 / 52);
break;
case AST_FORMAT_G723_1:
pred = rtp->lastts + g723_samples(f->data, f->datalen);
break;
@ -822,6 +831,18 @@ int ast_rtp_write(struct ast_rtp *rtp, struct ast_frame *_f)
while((f = ast_smoother_read(rtp->smoother)))
ast_rtp_raw_write(rtp, f, codec);
break;
case AST_FORMAT_ILBC:
if (!rtp->smoother) {
rtp->smoother = ast_smoother_new(52);
}
if (!rtp->smoother) {
ast_log(LOG_WARNING, "Unable to create ILBC smoother :(\n");
return -1;
}
ast_smoother_feed(rtp->smoother, _f);
while((f = ast_smoother_read(rtp->smoother)))
ast_rtp_raw_write(rtp, f, codec);
break;
default:
ast_log(LOG_WARNING, "Not sure about sending format %d packets\n", _f->subclass);
// fall through to...

Loading…
Cancel
Save